论文部分内容阅读
针对粒子群算法搜索精度不高特别是对高维函数优化性能不佳问题,提出了一种动态扩散粒子群算法(DDPSO)。该算法通过非线性函数调节惯性权重,在粒子速度更新方式上增加一个动态随机数加强粒子的搜索能力,提高算法的性能,同时在一定条件下对粒子进行重新扩散,保证种群的多样性。实验结果表明,DDPSO算法的寻优能力明显高于基本PSO及其他一些改进的PSO算法,并且该算法性能稳定,更加适合高维复杂函数优化问题。