论文部分内容阅读
目的介绍卷积神经网络方法,并将其应用于肺部多模态图像进行肺结节良恶性分类。方法基于肺部PET-CT多模态图像,分析临床信息与卷积神经网络的结合并与机器学习支持向量机方法作效果对比。结果 52名患者的323张结节图像纳入研究。研究表明,模型中纳入临床信息能够改进模型的分类效果,准确率、灵敏度、特异度分别为0.913、0.942、0.417;在与支持向量机模型的对比分析中,卷积神经网络模型特异度较低为0.417,而灵敏度达到0.942;支持向量机模型灵敏度较低为0.570,而特异度达到0.927。结论基