论文部分内容阅读
基于函数正交基展开的过程神经元网络训练,由于参数较多BP算法不易收敛。针对这一问题,本文提出了一种基于双链量子遗传算法的解决方案。首先按权值参数的个数确定染色体上的基因数,完成种群编码,然后通过染色体评估获得当前最优染色体,以该染色体为目标,用量子旋转门完成种群中个体的更新,用量子非门实现个体变异增加种群多样性。在该方法中,每条染色体携带两条基因链,因此可扩展对解空间的遍历性,加速优化进程。以两组二维三角函数的模式分类问题为例,仿真结果表明该方法不仅收敛速度快,而且寻优能力强。