论文部分内容阅读
为解决大型社交网络隐私保护中的复杂度过高及可用性差的问题,提出一种基于随机投影及差分隐私的社交网络隐私保护算法。利用随机投影对社交网络图的邻接矩阵进行指定投影数量的降维,进一步在降维后的矩阵中加入少量高斯噪声生成待发布矩阵。该算法满足(ε,δ)-差分隐私定义且能保持用户间欧氏距离的可计算性不变。实验和对比分析结果表明,该算法较传统差分隐私能大幅提升数据可用性且计算复杂性较小,适用于大规模社交网络隐私保护。