【摘 要】
:
解决由三条斜率不同的直线构成的可行域,及其条件下线性目标函数取得最值的问题,我们可以进行反向操作:对于可行域封闭的情况,求出各个顶点处的目标函数z值,并比较大小获得最
论文部分内容阅读
解决由三条斜率不同的直线构成的可行域,及其条件下线性目标函数取得最值的问题,我们可以进行反向操作:对于可行域封闭的情况,求出各个顶点处的目标函数z值,并比较大小获得最值;对于可行域不封闭的情况,且不知最值是否存在的情况,可用代入法进行检验判断,也可用极限的思想进行判断.
其他文献
牛运功(1963-),男,河北曲阳人。1992年毕业于河北师范大学美术系,获文学学士学位;2005年毕业于俄罗斯国立师范大学造型艺术系,获硕士学位。2007-2008年在中央美术学院油画系第二画室
只关注考点的教学方式,学生的思维往往习惯于求同性、定向性.而“一题多解”恰恰是克服思维定势的一种有效途径,也是培养学生发散思维的一种有效方式,有利于学生数学学科素养
一元二次不等式是初中学习的一元二次方程和一元一次不等式的又一次提高,是高中函数、数列等的基础,并且在高考数学中,很多题目都涉及到了一元二次不等式.笔者根据普通高中数
函数f(x)=lnx/x在高中导数试题中有着重要而广泛的应用,命题者经常以此函数为原型命制出各类试题.掌握好该函数的性质和应用能够更好地提高解题能力,实现高效复习备考.
最值问题是竞赛中的热点问题,下面探究一道竞赛最值题的错解与正解,供大家参考.
抽象函数不等式问题,没有具体函数表达式,有较大难度和灵活性,本文归纳几种巧构可导函数,妙解抽象函数不等式的解法供同学们参考.
介绍了磁流变技术的基本原理及其应用。利用磁流变液在磁场作用下形成的高剪切应力,可以利用磁场形成可变硬度的磁流变液对光学零件进行可控的抛光加工。美国Rochester大学率
本文以一道莫斯科竞赛试题为素材,充分挖掘题目的内在本质,对试题进行变式研究及推广,既可以拓宽学生的思维,又能提高学生解题能力,增强学生学习数学的兴趣,同时也体现数学的
求三角最值问题是高中阶段学生常见题型之一,本文对一道三角最值问题的错解进行了分析,并给出了试题的正解、变式和推广.
本文赏析2013年高考江西数学试卷中的一对解析几何姊妹题.