论文部分内容阅读
一、着眼发展性
数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。比如在学习北师大版七年级上册第四章第五节《平行四边形判定方法》,在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的判定方法去验证猜想结论的正确性。 经过全体师生一齐分析验证,最终得出结论:猜想是正确的,猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。
二、渗透教育性
教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现,法国著名数学家包罗?朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。 教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学。比如圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
三、贯穿实践性
情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。
例如:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的"固着点",但由于它们与"三角形内角和定理"之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境: 首先,在回顾三角形概念的基础上,提出:"三角形的三个内角会不会存在某种关系呢?"这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向"三个内角的和是否有一定的规律?"我适时地提出:"请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。"经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:"由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?"学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出"三角形的三个内角之和为180°"的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:"观察拼接图形,从中能得到什么启示?"学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题: 将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。 这题是外省市的一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。
总之,切实掌握好上述的三条特性,对开展数学学科的情境教学是有很大帮助的,这一点,我颇有体会,在日常的教学工作中,经常创设数学情境,以调动学生的积极性,形成主动发展,使学生作为活动主体角色,促进学生整体能力,学生的数学成绩也稳步提高。至此我似乎感觉在情境教学的领域中到了如何将素质教育纳入课堂教学,融入学校的各个层面的有效途径,并且可以继续满怀信心地走下去。
数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。比如在学习北师大版七年级上册第四章第五节《平行四边形判定方法》,在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的判定方法去验证猜想结论的正确性。 经过全体师生一齐分析验证,最终得出结论:猜想是正确的,猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。
二、渗透教育性
教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现,法国著名数学家包罗?朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。 教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学。比如圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
三、贯穿实践性
情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。
例如:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的"固着点",但由于它们与"三角形内角和定理"之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境: 首先,在回顾三角形概念的基础上,提出:"三角形的三个内角会不会存在某种关系呢?"这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向"三个内角的和是否有一定的规律?"我适时地提出:"请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。"经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:"由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?"学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出"三角形的三个内角之和为180°"的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:"观察拼接图形,从中能得到什么启示?"学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题: 将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。 这题是外省市的一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。
总之,切实掌握好上述的三条特性,对开展数学学科的情境教学是有很大帮助的,这一点,我颇有体会,在日常的教学工作中,经常创设数学情境,以调动学生的积极性,形成主动发展,使学生作为活动主体角色,促进学生整体能力,学生的数学成绩也稳步提高。至此我似乎感觉在情境教学的领域中到了如何将素质教育纳入课堂教学,融入学校的各个层面的有效途径,并且可以继续满怀信心地走下去。