论文部分内容阅读
针对单一特征目标跟踪导致多数跟踪算法鲁棒性差的原因,提出一种背景加权的多特征融合目标跟踪算法。在跟踪过程中对目标模型进行背景加权,同时利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将背景加权直方图和空间直方图相结合,并且引入特征不确定性度量,自适应调整不同特征对跟踪结果的贡献,有效地提高了算法的鲁棒性。实验结果表明:与传统融合算法相比,提出的算法具有更强的鲁棒性,同时提高了跟踪精度。该算法在目标表示和跟踪性能上都有很大的提高。