【摘 要】
:
针对光栅型波前曲率传感自适应光学中的拉普拉斯算子本征函数实时波前复原方法,分析了光电探测器上的光斑大小和位置偏差,以及本征模式数量对波前复原精度的影响。结果表明:截取的光斑区域大小对波前复原精度有较大的影响,可采用环围能量比进行确定;由于存在其他级次的衍射光,光斑区域位置偏差不仅会引起波前倾斜误差,还会引起其他波前误差;当采用的模式过多时,由有限的分辨率引起的模式耦合会显著影响波前复原精度,可利用模式间的相关系数来估计最佳模式数。
【机 构】
:
华北理工大学电气工程学院,河北唐山,063009
论文部分内容阅读
针对光栅型波前曲率传感自适应光学中的拉普拉斯算子本征函数实时波前复原方法,分析了光电探测器上的光斑大小和位置偏差,以及本征模式数量对波前复原精度的影响。结果表明:截取的光斑区域大小对波前复原精度有较大的影响,可采用环围能量比进行确定;由于存在其他级次的衍射光,光斑区域位置偏差不仅会引起波前倾斜误差,还会引起其他波前误差;当采用的模式过多时,由有限的分辨率引起的模式耦合会显著影响波前复原精度,可利用模式间的相关系数来估计最佳模式数。
其他文献
采用高温熔融法,经过两步退火热处理,在钠硼铝硅酸盐玻璃基底中成功合成了晶粒尺寸为3.63~4.33 nm、掺杂体积分数为2%的PbSe 量子点。用高温差热分析仪确定了最佳的热处理温度,用X 射线衍射仪和透射电镜分析了玻璃中PbSe 量子点的结晶、尺寸和粒子分布情况。用分光光度仪和荧光光谱仪,观测了量子点玻璃的吸收谱和荧光发射谱。结果表明,第一次热处理时间在3~5 h 之间,温度为500 °C,玻璃才有荧光辐射,其辐射峰的半峰全宽为200 nm,峰值波长位于1220~1279 nm。第二次热处理的最佳时间为
本文根据可见光区域测量的不同厚度,不同稳定情况下Ag膜透过率光谱响应曲线,结合岛状金属膜有效介质理论,讨论了Ag膜中类自由电子和束缚电子引起的等效洛伦兹振子和带间跃迁随厚度和稳定时间的变化规律。理论计算的透过率曲线与实验符合得很好。比较理论与实验,得到了不同厚度下、不同稳定情况Ag膜的光学常数。
为了实现高精度的基于直线段对应的相机位姿估计,提出一种直接最小二乘法。通过提出并利用一种直线段之间的距离测度,将原问题转化为最小化一个姿态旋转矩阵的二次目标函数,该距离测度综合考虑了线段的端点距离、中点距离、夹角和线段的长度,通过旋转矩阵的CGR参数表达获得一个修正的目标函数,此修正目标函数的最优解条件组成了一个三元三次方程组,利用代数多项式方法在不需要迭代的情况下直接求解这个方程组,从而得到了旋
在相同的曝光和显影条件下,用D-19和Phenisol两种显影液定性比较了SIOFM-5FW底片、Kodak101-05和Ilford-Q板在100.0 nm以下的软X射线和XUV波段范围里的曝光特性.比较实验表明,SIOFM-5FW底片对波长大于10.0 nm的辐射的响应介于Kodak101-05和Ilford-Q板之间;对于10.0 nm以下的短波长区,SIOFM-5FW比Kodak101-05灵敏,而且有较高的饱和光密度值和动态范围,但存在明显的碳K吸收边结构。讨论了所用的两种显影液对底片曝光特性的
在低温下制备了三氧化二铝/二氧化硅双层栅介质铟镓锌氧薄膜晶体管。原子力显微镜图显示双层栅介质薄膜具有良好的均一性。经过200 ℃真空退火处理, 双层栅介质铟镓锌氧薄膜晶体管表现出良好的转移特性和输出特性, 器件的亚阈值摆幅SS为177 mV/dec, 电流开关比为1.9×108。低温下制备的双层栅介质铟镓锌氧薄膜晶体管有希望应用于柔性电子。
线列红外推扫探测器扫描帧率低,存在带状噪声,为此,提出一种基于Robinson-Guard滤波器和像素聚拢度的小目标检测方法。在红外图像上均匀布置采样窗口,令采样窗口根据图像亮度梯度聚集到高亮区域。融合红外图像的目标能量信息、局域对比度、目标像素聚拢度等多种特征,将采样窗口的加权叠加作为目标概率图。使用全局阈值分割获取目标,最终实现红外小目标的检测。实验结果表明,该算法可以检测中小尺寸的红外目标,
为了提高点云的配准精度,解决单一特征导致迭代最近点(ICP)算法在噪声干扰和数据缺失的情况下鲁棒性差的问题,提出一种基于邻域表面形变信息加权的点云配准方法。先为简化点的邻域信息提出以邻近点数量为约束的邻域构建方法,考虑邻近点对采样点的影响并引入加权方法提高内部形态描述子(ISS)特征点提取算法的提取效率;计算邻域的法向量内积均值对点云进行第二次特征点提取;再利用快速点特征直方图(FPFH)进行特征
光学元件激光损伤是限制高功率激光装置输出能力的关键因素,为了理解光学元件激光损伤过程,提高光学元件抗激光损伤性能,利用偏振阴影显微镜成像技术和光电探测技术研究了紫外皮秒激光诱使熔石英光学元件损伤的时间分辨动力学过程。结果显示了紫外皮秒激光作用过程中冲击应力波的传输特性、瞬态吸收的演变过程以及裂缝的发展过程。结果表明,冲击应力波的传输速度约为6.9 μm/ns;532 nm波长的激光瞬态吸收在激光作用之后2.5 μs时激光吸收达到最大值,之后缓慢下降,整个持续时间可达50 μs以上;损伤裂纹在7.5 ns时