论文部分内容阅读
传统的“试错”型材料研究方法存在周期长、成本高和偶然性大等不足,已经不能满足现代材料研发的需求,提高研发针对性、缩短材料研发周期、降低材料研发成本成为全世界的研究热点。随着数据量的不断累积以及计算机技术的不断发展,数据密集型科学逐渐成为科学研究的第四范式。从大量数据中寻找能反映材料本征的“基因”,是材料现行的研究趋势。人工神经网络方法因具备自学习、联想存储以及高速寻找优化解的能力的优点而被广泛应用于材料科学领域。研究者利用人工神经网络等机器学习模型对材料的试验或理论计算数据进行挖掘,在专家经验和理论指导下