抗氧化天然植物提取物及其在肉品中的应用研究进展

来源 :肉类研究 | 被引量 : 0次 | 上传用户:czy239239
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:在各类肉品的生产和加工过程中,食品防腐添加剂对于保持产品营养特性和安全性必不可少。然而,人们期待肉品中所添加的成分尽可能源自天然产物,因此寻找可替代食品防腐抗氧化添加剂功能的天然提取物越来越受到关注。现有研究的抗氧化天然提取物来源于蔬菜、水果、香辛料、草本和种子等,主要作用是抑制脂质氧化、酸败,也可在一定程度上抑制微生物生长,应用于各类肉制品中,以有效延长其保质期,甚至还具有其他的功能特性。本文对抗氧化天然提取物的来源、萃取、氧化反应、功能性表现,特别是在各类肉品中的应用进行综述,以期为健康、安全、具有较长保质期和稳定货架期肉品的加工提供借鉴。
  关键词:天然植物提取物;来源;提取;抗氧化;肉品
  Recent Progress in Natural Plant Extracts with Antioxidant Activity and Their Application in Meat Products
  YANG Yixi, WANG Wei*, BAI Ting, ZHANG Rui, ZHAO Zhiping, ZHANG Yue, CHEN Hongfan
  (Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu 610106, China)
  Abstract: During the production and processing of various meat products, food preservatives are essential to maintain the nutritional characteristics and ensure product safety. However, interest in discovering natural extracts which can function as a replacer for food preservatives and antioxidants has grown due to consumer anticipation for natural ingredients added to meat products. The natural antioxidant extracts previously studied in the literature are mostly derived from vegetables, fruits, spices, herbs and seeds. These extracts are mainly used to inhibit lipid oxidation and microbial growth in meat products to extend the shelf life, which even have other functional properties. In this paper, the sources, extraction, oxidation reaction, functional performance and recent applications in various meat products of natural antioxidant extracts are summarized. This review is expected to provide a reference for the processing of healthy and safe meat products with long and stable shelf life.
  Keywords: natural plant extracts; source; extraction; antioxidant; meat products
  DOI:10.7506/rlyj1001-8123-20201225-299
  中图分类号:TS251.1
   文献标志码:A 文章编号:1001-8123(2021)01-0074-09
  引文格式:
  杨轶浠, 王卫, 白婷, 等. 抗氧化天然植物提取物及其在肉品中的应用研究进展[J]. 肉类研究, 2021, 35(1): 74-82. DOI:10.7506/rlyj1001-8123-20201225-299.    http://www.rlyj.net.cn
  YANG Yixi, WANG Wei, BAI Ting, et al. Recent progress in natural plant extracts with antioxidant activity and their application in meat products[J]. Meat Research, 2021, 35(1): 74-82. DOI:10.7506/rlyj1001-8123-20201225-299.    http://www.rlyj.net.cn
  畜禽肉是一種高营养价值的食物,能提供人类营养所需的蛋白质、矿物质、维生素和其他微量元素。加工与贮藏是保持和提高畜禽肉营养价值最为重要的手段,而细菌生长和脂质氧化是决定肉品质量损失和货架期长短的主要因素[1]。
  在肉品的加工贮藏过程中,防腐添加剂主要用于抑制微生物的生长和脂质的氧化酸败,用以有效延长肉制品的货架期。硝酸盐(亚硝酸盐)是重要的食品添加剂之一,不仅可有效抑制贮藏过程中微生物的生长和脂肪的氧化酸败,还可通过发色赋予产品良好的外观,以及增强产品风味[2]。在现代冷链物流及功能性包装应用条件下,食品的微生物风险可得到有效控制,而脂肪含量较高的肉制品的氧化酸败仍然较难控制,食品添加剂的重要功能则可有效显现。硝酸盐或亚硝酸盐在肉制品中的使用已有上千年的历史,尽管其高效性和安全性通过长期研究得到公认,并在肉制品工业生产中广为应用,各国也制定有严格的安全使用规定[3],但是其使用可能存在的安全隐患使人们把目光投向其他替代化合物[4]。   从肉类产品的消费习惯上看,消费者最期待的是最低限度加工、无(少)保鲜防腐剂和保质期更长的肉制品,也希望在肉制品的标签中呈现天然食品添加剂的成分。近年来,由脂肪氧化酸败、致病性微生物引起的食源性风险屡见不鲜,人们对肉制品食用安全的关注也逐渐加强。为了恢复消费者对食品安全的信心,食品工业开始寻找更为安全、具有有效抗菌、抗氧化功能的天然替代品。为此,人们把目光聚集在天然植物提取物上,除了期待其具有抗菌、抗氧化和抑菌性质外,也希望天然植物提取物同时含有与健康相关的有益成分[5]。本文将对抗氧化天然提取物的来源、萃取、抗氧化能力和功能特性以及各种提取物在各类肉品中的应用进行综述。
  1 天然植物提取物及其抗氧化成分提取
  1.1 抗氧化天然植物提取物的来源
  很多天然植物材料所含的化合物都具有抗氧化能力,其中一些天然植物提取物已经证明具有安全可靠的抗氧化作用并应用于食品工业。抗氧化天然植物提取物的来源广阔,普遍分为蔬菜提取物、水果提取物、香辛料提取物、草本提取物和种子提取物等[6]。在肉制品中添加这些天然提取物可降低脂质氧化,改善色泽稳定性和总抗氧化能力,并在一定程度上抑制有害菌的生长,这些都能使肉品的货架期延长。各类抗氧化提取物来源及其成分详见表1。
  被分离出来的具有抗氧化作用的天然提取物大多是具有亚稳态抗氧化特性的多酚类物质或具有共轭双键的次生代谢物,其主要活性成分为多酚、类黄酮、酚二萜及丹宁酸等[25-26]。例如,单萜酚中麝香草酚和香芹酚是天然提取物抗氧化作用的活性成分,其活性与酚结构和氧化还原特性有关[27]。研究证明,芳香植物是抗氧化剂的有效来源,如罗勒、牛至、柠檬、百里香、鼠尾草等,它们的提取物多以精油形式存在[28]。除精油类天然抗氧化提取物外,还存在其他形式的抗氧化剂,主要来源为葡萄籽、绿茶、橄榄叶、西兰花、蔓越莓等[6]。
  1.2 抗氧化天然植物提取物的萃取
  溶剂萃取是获取天然提取物有效成分的常用方法。由于不同极性的化合物具有不同的抗氧化潜力,因此萃取率和提取物的抗氧化活性都强烈依赖于溶剂的类型[29]。萃取溶剂首先不能含有有毒有害物质,同时应符合特定的纯度标准。萃取溶剂的选择取决于目标物质,选择适合的萃取溶剂可以使提取物发挥最大的生物活性。常用的萃取溶剂有乙酸乙酯、乙醚、己烷、二氯甲烷、丙酮、甲醇和乙醇,或者它们与水的混合溶液等。如甲醇和水的混合溶液、乙醇和丙酮的混合溶液[30]。虽然甲醇比较便宜,但乙醇却是最常用的萃取溶剂,因为乙醇无毒,可安全用于食品中。对于甲醇或其他溶剂,其残留物必须去除。
  除了溶剂萃取,其他方法也广泛应用于天然提取物的萃取,如亚临界水萃取、脉冲电萃取、微波辅助萃取、超声辅助萃取、超临界流体萃取、固相萃取和加压液体萃取等[31]。萃取方法各有优劣,需根据实际情况进行选择。植物的叶、种子、木材、树皮、根、花、果实和茎都可以作为天然植物提取物的来源[32]。除萃取溶剂不同导致天然植物提取物的种类和含量不同外,原料本身、当地气候、种植地点及萃取的部位不同,也会导致提取物成分的不同[33]。如毛管蕨成熟果实中提取的天然提取物中鉴定出12 种成分,主要是百里酚(36.7%)、γ-松油烯(36.5%)和对-异丙苯(21.1%);而在收获期的果实中提取的天然提取物中仅鉴定出10 种成分,包括γ-松油烯(43.2%)、百里酚(32.4%)和对-异丙苯(20.7%)[34]。
  2 天然植物提取物抗氧化作用及其功能特性
  2.1 肉品中脂质和蛋白质的氧化及其抑制
  脂质等氧化是一种复杂的现象,涉及自由基链式反应(引发、增长和终止3 个阶段)。脂质氧化过程中形成的活性氧(reactive oxygen species,ROS)和铁离子、铜离子等过渡金属离子会对肌肉蛋白造成氧化损伤[35]。
  在反应引发阶段,促氧化剂、ROS或任何其他有利氧化条件的存在,都会导致不饱和脂肪酸失去氢自由基。由于脂肪酸和氧分子间基态不等的电子态和自旋势垒,ROS或促氧化剂只能在热处理后、氧化还原反应或光反应条件下产生自由基,从而启动脂质氧化的初级反应;在第2阶段中,氧分子与不饱和脂肪酸的烷基自由基发生反应,生成过氧化自由基,在随后的反应中,会生成氢过氧化物;在肌肉类食品中,氢过氧化物易进一步受自由基连锁反应的影响,如异构化和分解,生成第2阶段产物,其中包括戊醛、己醛、4-羟基壬醛和丙二醛(malondialdehyde,MDA);最后一个阶段被称为终止反应,期间自由基与各组分反应形成稳定的产物;但是其他不稳定的化合物也会在终止反应过程中形成,正是这些不稳定的化合物影响肉制品质量,产生不愉快的味道和气味[36-37]。
  动物被屠宰后,血红蛋白和肌红蛋白作为促氧化剂,在肉品的加工和贮藏中发生脂质氧化反应[38]。发生脂质或蛋白质氧化反应时,影响消费者对肉品接受度的首要质量和感官属性是颜色[39]。颜色的变化反映了肌蛋白的氧化速率。除了脂类自身氧化外,肉類蛋白质在加热和贮藏过程中对氧化反应的敏感性也会导致肉质的有害变化,其中包括保水能力、色泽和整体营养质量,如必需氨基酸的损失等[40]。抗氧化剂被添加到不同的肉品中以防止脂质氧化,延缓异味的形成,维持颜色的稳定。
  抗氧化剂的化学结构多样,作用机制各不相同,其关键机制是抗氧化剂与自由基反应形成相对稳定的非活性产物[41](图1)。根据抗氧化剂的作用方式,它们又被分为2 类。一类为初级抗氧化剂,其直接与脂质自由基反应并将其转化为相对稳定的产物,这类抗氧化剂被称为断链抗氧化化合物。另一类为次级抗氧化剂,通过不同的作用机制降低氧化速率。初级抗氧化剂主要供给氢原子,次级抗氧化剂主要与有催化效能的金属离子(Fe2+、Fe3+和Cu2+)结合[42]。一些抗氧化天然提取物,如酚类化合物同时采用初级和次级抗氧化剂的作用机理。其中,酚酸、酚二萜和精油等天然抗氧化剂具有很强的供氢活性,并阻止自由基的形成和ROS的增长,而其他酚类物质则可与促氧化剂(过渡金属离子)螯合,如黄酮类化合物[43-44]。   2.2 天然植物提取物的抗氧化机制及优势
  脂质氧化是导致食品变质的主要原因,它限制了食品保质期,影响了食品质量。对肉品来说,其对氧化反应敏感,且稳定性低。脂质氧化导致组织、味道、气味和颜色劣变,同时形成次生的、潜在的毒素[45]。正因如此,肉品中需要添加抗氧化剂以维持颜色稳定,避免维生素被破坏,防止毒素的形成[46-47]。一些合成抗氧化剂,如丁基羟基茴香醚(butyl hydroxyanisole,BHA)、丁基羟基甲苯(butylated hydroxytoluene,BHT)、没食子酸丙酯和叔丁基对苯二酚长期以来被用于抑制肉类氧化引起的有害变化,但具有潜在的遗传毒性效应,在高剂量应用水平下可能致癌[48]。因此,当前的产业趋势已经转向从各种植物中提取天然抗氧化剂,如富含能清除自由基的多酚类化合物等[49]。除了顺应消费者对“天然来源”的需求外,很少有证据表明这些天然抗氧化剂有不良影响。天然抗氧化剂不仅能够中和ROS,还能减少高温下毒素形成的可能。当天然抗氧化剂应用于肉品配方中时,即使肉不经过大量加工,它们也能表现出强大的抗氧化潜力。这种既健康又有营养价值的天然抗氧化剂在肉类加工中的使用具有独特的优势[50]。
  从饮食中的水果、蔬菜、豆类获取的各种外源酚类化合物,如在肉类加工中使用的香料和草药,都有助于形成抗氧化剂。Terenina等[51]研究牛至提取物对脂肪酸甲酯氧化的预防作用,从6 月龄BALB品系的小鼠大脑中提取含有16~24 个碳原子的饱和脂肪酸、单不饱和脂肪酸、双不饱和脂肪酸和多不饱和脂肪酸混合物,在有或没有牛至精油的情况下,观测1 年内脂肪酸甲酯在己烷溶液中、光照条件下自氧化过程中的变化,结果表明,不飽和脂肪酸的氧化速率随不饱和程度的增加而增加,而牛至精油能阻碍不饱和脂肪酸的氧化过程,其中,香芹酚和百里酚是牛至精油的主要抗氧化成分,牛至精油随浓度增加其抗氧化活性增加。
  肉品中除使用单一成分的抗氧化天然植物提取物外,很多情况下是采用多种抗氧化天然提取物的混合物。Sampaio等[52]研究发现,鼠尾草提取物(质量分数0.2%)、牛至提取物(质量分数0.2%)和蜂蜜(质量分数5%或10%)的混合物具有很高的接受度,并表现出更好的抗氧化活性,混合物降低了熟鸡胸肉和鸡腿肉4 ℃贮藏96 h的硫代巴比妥酸反应物(thiobarbituric acid reactive substances,TBARs)值和己醛含量。Lara等[14]评估了迷迭香提取物(质量分数0.03%)和香蜂叶提取物(质量分数0.1%)在气调包装熟猪肉饼中的抗氧化作用,结果表明,在光照条件下贮藏3 d,天然提取物对脂质和蛋白质的氧化具有保护作用,从而保持产品的颜色、质地和香气,效果甚至优于BHT。
  另外,天然提取物载体的不同亦会影响其抗氧化活性。Hussein等[53]研究使用不同载体材料对纳米封装迷迭香提取物的化学成分、热稳定性和抗氧化活性的影响,结果表明,与羧甲基纤维素或海藻酸钠相比,以壳聚糖为载体的迷迭香提取物的总酚释放量(3 349.4 μg/mL,以没食子酸当量计)和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性最高。
  2.3 抗氧化天然植物提取物的其他功能特性
  对于抗氧化天然植物提取物来说,除了能够延长食品货架期和提高感官品质外,同时还具有抗菌、抗病毒、抗肿瘤、抗炎、预防糖尿病、延缓衰老、保护心血管和作为化妆品的功效成分等作用,亦可应用于功能性食品研发[54](图2)。例如,具有良好抗氧化性的百里香,长期被用作感冒药、解痉药、驱虫剂、祛痰剂和治疗消化问题的传统药物。百里酚也被用于治疗心血管、神经和呼吸系统疾病,因此百里香可被认为是能提供除基本营养外的功能性食品添加剂[55-57]。从迷迭香、柑橘类水果、薰衣草和其他天然植物中提取的精油也被证明具有强效抗氧化、抗菌效能,常被用作食品中的天然防腐剂[58]。
  天然抗氧化剂加入肉品中可以增强内源性抗氧化剂的功效,抵御氧化应激和ROS诱导的组织损伤和退化性疾病[60]。富含天然酚类化合物的植物提取物(如葡萄籽、绿茶、黑醋栗提取物)可降低患肥胖症、动脉粥样硬化和癌症的风险[61-62]。正是由于这些富含抗氧化类黄酮和酚类化合物的天然植物提取物的功能特性,肉类加工者开始专注于开发具有增强营养和健康效能的新产品。天然酚类抗氧化剂不需要吸收,其作为食品成分对胃肠道的保护作用最为明显[63]。例如,将富含VE、VB和多酚类物质的植物性食品成分(如米糠和核桃提取物)加入香肠、重组牛肉和其他加工肉类中,可以提高产品的氧化稳定性、质构特性和营养价值[64-65]。添加熟胡萝卜和甘薯可以改善牛肉饼的颜色、质地和VA含量[66]。
  3 抗氧化天然植物提取物在肉品中的应用
  3.1 在生鲜调理肉品中的应用
  Mc Carthy等[67]评价芦荟、葫芦巴、人参、芥末、迷迭香、鼠尾草提取物和茶儿茶素在鲜猪肉馅中的抗氧化活性,证明茶儿茶素、迷迭香提取物和鼠尾草提取物的抗氧化作用最为有效。橄榄叶提取物已被证明能保持禽肉冷冻后的感官、营养特性和微生物稳定性。橄榄叶精油含有多酚类物质,具有抗氧化和抗菌特性,能够抑制微生物生长,延长禽肉的货架期[68]。石榴籽提取物可以在各类鲜肉的保存中发挥作用。Shan Bin等[69]研究发现,添加石榴籽提取物至生猪肉中,在20 ℃条件贮藏9 d后,猪肉TBARs值降低达42.85%。表2列举了一些抗氧化天然提取物在各种调理肉品中的应用。
  3.2 在香肠制品中的应用
  大蒜在香肠等中显现较好的抗氧化功能,其抗氧化成分主要是黄酮类化合物(如黄酮、檞皮素)和含硫化合物(如丙基半胱氨酸、二烯丙基硫氰化物和烯丙基三硫氰化物)[74-75]。对生鸡肉香肠3 ℃贮藏期间的脂质氧化情况进行观察,对比成分中的新鲜大蒜、大蒜粉、BHA和大蒜油的作用效果,结果表明,新鲜大蒜是最有效的抗氧化成分,其次是大蒜粉[19]。芝麻油、芦丁、橄榄叶提取物的酚类化合物对生、熟猪肉香肠均具有抗氧化活性,抗氧化能力按由大到小排序为芝麻油、橄榄叶提取物、芦丁提取物[76]。茶提取物中的茶多酚在猪肉香肠中也表现出对总活菌数的抑制作用,而TBARs值和感官品质与对照组相比变化较小[77]。   目前,科研人员对迷迭香提取物对香肠制品的抗氧化作用进行大量的研究。在2 种市售油溶性迷迭香提取物VivOX4和VivOX20(分别含有4%和20%肉桂酸)作用下,法兰克福鸡肉香肠表现出更高的氧化稳定性[78]。Sebranek等[79]评估商品迷迭香提取物添加量为2 500 mg/kg时,在预煮冷冻猪肉香肠中的抗氧化效果(36.3 kg猪肉添加136.2 g食盐、68.1 g葡萄糖、0.631 kg香料,预煮内部温度为71 ℃,然后在-20 ℃贮藏),结果表明,与BHA/BHT复合物(200 mg/kg,质量比1∶1)相比,迷迭香提取物能保持预煮冷冻香肠具有较低TBARs值。
  Nowak等[80]研究黑醋栗叶和酸樱桃叶的天然多酚提取物对冷藏猪肉香肠脂质氧化和感官性状的影响,结果表明:冷藏0 d,各组之间没有观察到显著差异;冷藏14 d和28 d后,与添加食盐(NaCl)的对照组相比,添加腌制盐(99.5% NaCl和0.5% NaNO2)、黑醋栗叶和酸樱桃叶提取物能显著降低MDA的产生量(P<0.05);添加剂的抗氧化效率由高到低依次为腌制盐>黑醋栗叶提取物>酸樱桃叶提取物>食盐;同时,这2 种天然植物提取物与腌制盐和食盐相比对猪肉香肠感官性状无不良影响。
  在中式香肠的抗氧化活性研究中,提高香肠中总酚含量能增强其抗氧化作用。例如,苦荞粉中的酚和檞皮素成分。适量添加苦荞粉(2%)可以提高香肠的抗氧化能力并增加香肠制品的保健性能[81]。在猪肉匀浆肠馅中添加0.2%莲子外果皮提取物会降低广式香肠的TBARs值和过氧化值;另外,在6.25、12.50、25.00、50.00、100.00 μg/mL添加量下,莲子外果皮提取物对3T3-L1前脂肪细胞的分化呈剂量依赖性,提取物的添加量越高,对该细胞的分化抑制作用越强[82]。
  3.3 在酱卤和腌腊肉制品中的应用
  酱卤和腌腊是我国传统的肉类加工方法。何丹等[83]选取3 种市售的天然提取物Nature 10 CS、T-4N DV CN和T-4N W DV,分别研究其对腌腊和酱卤肉制品的影响,其中天然提取物Nature 10 CS(主要成分为葡萄柚、白柠檬、迷迭香、柠檬、石榴、甜橙提取物、葡萄糖、微量亚硝酸钠)可使猪肉制品具有良好的色泽,同时降低硝酸盐残留量。吴少雄等[84]向腊肉制品中添加茶多酚(茶提取物),通过对酸价和过氧化值进行比较发现,添加0.1%茶多酚对腊肉抗氧化、色泽、保鲜、香气保持均有正向作用。刘文营等[85]分析西兰花种子提取物在广式腊肉中的抗氧化能力,实验证明,西兰花种子提取物对肉制品的过氧化反应有控制作用,添加1.5%西兰花种子提取物对腊肉的L*和b*產生正面影响,另外,此添加量下腊肉TBARs值与添加0.02% BHT相比略低。彭雪萍等[86-87]将苹果多酚应用在酱卤和腌腊肉制品中,发现苹果多酚、BHT复合物(1∶1)可延长酱卤和腌腊肉制品的货架期,产品抗氧化活性明显提高。
  3.4 在其他肉制品中的应用
  聂吉语等[88]分析迷迭香提取物的12 种多酚成分,并应用于中式培根加工中,实验证明,迷迭香提取物有良好的清除DPPH自由基和羟自由基的能力,并解决了中式培根的表面脂质氧化问题。Fernández-López等[89]重点选择迷迭香、柑橘和柠檬提取物,研究其在瑞典式牛肉丸中的抗氧化活性,在12 d的贮藏期间,加入牛肉丸中的各天然提取物均能有效降低TBARs值(P<0.05),其中迷迭香提取物最为有效。表3列举了一些抗氧化天然提取物在不同类型肉制品中的应用。
  3.5 在肉品包装中的应用
  近年来,薄膜和涂料等活性包装材料的使用有了很大发展,被认为在食品保鲜领域大有可为。活性包装的作用机理是活性成分通过与食物的直接接触从包装中迁移到食品中,并发挥其功能[96]。特别是可食用包装的使用广受消费者欢迎,这种包材的薄膜或涂层除延长产品保质期外,可选择性地与食品一起食用。应用天然植物提取物涂膜制作的食品包装材料,其潜在的抗菌、抗氧化功能已通过大量研究得到证实。例如,肉丸室温下贮藏在加入肉桂提取物、纳米黏土和木薯淀粉的薄膜袋中,显著抑制了肉丸中微生物的生长,在贮藏96 h内均低于美国食品和药品监督管理局规定的微生物限值(106 CFU/g);木薯淀粉基薄膜与肉桂提取物和纳米黏土颗粒复合,可作为食品工业包装材料的替代品,以延长肉制品的货架期[97]。以牛至提取物为基质的薄膜对禽肉中的细菌生长具有有效抑制作用。例如,含有牛至精油的活性膜可以抑制总菌群和假单胞菌的生长[98]。另外,多香果精油加入到以乳蛋白为基质的可食用薄膜中,会呈现出比牛至精油更高的抗氧化活性[99]。
  4 结 语
  众所周知,肉制品是蛋白质、必需氨基酸、B族维生素、矿物质和其他营养素的优良来源,在食品中占据突出地位[26]。当今,肉制品又因其高含量的动物脂肪、胆固醇以及产品中合成抗氧化剂和抗菌剂的应用可能对人类健康带来不利影响[100]。为了抑制肉品的脂质氧化和酸败,减少使用人工合成、潜在致癌的抗氧化剂,研究人员将目光聚集到抗氧化天然植物提取物上。这些抗氧化天然植物提取物来源广泛、活性成分多样,在生鲜调理、酱卤、腌腊、香肠等肉品中均有良好应用,可作为单一成分使用,亦可以复合物的形式发挥作用,可用作载体,亦可应用于肉品包装,应用范围广。另外,此类植物提取物还具有抗菌、抗病毒、抗肿瘤、抗炎、预防糖尿病、延缓衰老、保护心血管等其他生物活性。因此,加大对抗氧化天然植物提取物的研究与开发,可保障肉品质量和营养,有助于人们对一些疾病的预防,与现代消费观念契合[101-102]。
  参考文献:
  [1] JIANG Jiang, XIONG YoulingL.. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: a review[J]. Meat Science, 2016, 120: 107-117. DOI:10.1016/j.meatsci.2016.04.005.   [2] MIRELES-ARRIAGA A I, RUIZ-NIETO J E, MENDOZA-CARRILLO M, et al. Functional restructured meat: application of ingredients derived from plants[J]. Vitae-Columbia/Vitae-Revista de la Facultad de Quimica Farmaceutica, 2017, 24(3): 196-204. DOI:10.17533/udea.vitae.v24n4a05.
  [3] 王衛. 硝盐在肉制品中的作用及其替代物应用[J]. 四川农业科技, 2018(8): 50-52. DOI:10.3969/j.issn.1004-1028.2018.08.021.
  [4] FERYSIUK K, W?JCIAK K M. Reduction of nitrite in meat products though the application of various plant-based ingredients[J]. Antioxidants, 2020, 9(8): 711-739. DOI:10.3390/antiox9080711.
  [5] VELASCO V, WILLIAMS P. Improving meat quality through natural antioxidants[J]. Chilean Journal of Agricultural Research, 2011, 71(2): 313-322. DOI:10.4067/s0718-58392011000200017.
  [6] HYGREEVA D, RADHAKRISHNA P K. Potential application of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products[J]. Meat Science, 2014, 98(1): 47-57. DOI:10.1016/j.meatsci.2014.04.006.
  [7] BASTIDA S, FRANCISCO J, MUNIZ S, et al. Antioxidant activity of carob fruit extracts in cooked pork meat systems during chilled and frozen storage[J]. Food Chemistry, 2009, 116(3): 748-754. DOI:10.1016/j.foodchem.2009.03.034.
  [8] DOMENECH-ASENSI G, GARC?A-ALONSO F J, MART?NEZ E, et al.
  Effect of the addition of tomato paste on the nutritional and sensory properties of mortadella[J]. Meat Science, 2013, 93(2): 213-219. DOI:10.1016/j.meatsci.2012.08.021.
  [9] BANERJEE R, VERMA A K, DAS A K, et al. Antioxidant effects of broccoli powder extract in goat meat nuggets[J]. Meat Science, 2012, 91(2): 179-184. DOI:10.1016/j.meatsci.2012.01.016.
  [10] RODR?GUEZ-CARPENA J G, MORCUENDE D, EST?VEZ M, et al. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage[J]. Meat Science, 2011, 89(2): 166-173. DOI:10.1016/j.meatsci.2011.04.013.
  [11] CAILLET S, C?TE J, DOYON G, et al. Antioxidant and antiradical properties of cranberry juice and extracts[J]. Food Research International, 2011, 44(5): 1408-1413. DOI:10.1016/j.foodres.2011.02.019.
  [12] HAYRAPETYAN H, HAZELEGER W C, BEUMER R R. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures[J]. Food Control, 2012, 23(1): 66-72. DOI:10.1016/j.foodcont.2011.06.012.
  [13] GRASSO S, BRUNTON N P, LYNG J G, et al. Healthy processed meat products-regulatory, reformulation and consumer challenges[J].Trends in Food Science and Technology, 2014, 39(1): 4-17. DOI:10.1016/j.tifs.2014.06.006.   [14] LARA M S, GUTIERREZ J I, TIM?N M, et al. Evaluation of two natural extracts (Rosmarinus offificinalis L. and Melissa officinalis L.)
  as antioxidants in cooked pork patties packed in MAP[J]. Meat Science, 2011, 88(3): 481-488. DOI:10.1016/j.meatsci.2011.01.030.
  [15] SHAN Bin, CAI Yizhong, SUN Mei, et al. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents[J].Journal of Agricultural and Food Chemistry, 2005, 53(20): 7749-7759. DOI:10.1021/jf051513y.
  [16] WOJDYLO A, OSZMIA?SKI J, CZEMERYS R. Antioxidant activity and phenolic compounds in 32 selected herbs[J]. Food Chemistry, 2007, 105(3): 940-949. DOI:10.1016/j.foodchem.2007.04.038.
  [17] MIRON T L, HERRERO M, IB??EZ E. Enrichment of antioxidant compounds from lemon balm (Melisa officinalis) by pressurized liquid extraction and enzyme-assisted extraction[J].Journal of Chromatography A, 2013, 1288(3): 1-9. DOI:10.1016/j.chroma.2013.02.075.
  [18] HASSAN O, FAN L S. The anti-oxidation potential of polyphenol extract from cocoa leaves on mechanically deboned chicken meat (MDCM)[J]. Food Science and Technology, 2005, 38(4): 315-321. DOI:10.1016/j.lwt.2004.06.013.
  [19] BREWER M S. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(4): 221-247. DOI:10.1111/j.1541-4337.2011.00156.x.
  [20] DING Yi, LIN Huiwen, LIN Yiling, et al. Nutritional composition in the chia seed and its processing properties on restructured ham-like products[J]. Journal of Food and Drug Analysis, 2018, 26(1): 124-134. DOI:10.1016/j.jfda.2016.12.012.
  [21] DORMAN H J D, PELTOKETO A, HILTUNEN R, et al. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs[J]. Food Chemistry, 2003, 83(2): 255-262. DOI:10.1016/S0308-8146(03)00088-8.
  [22] LEE S, UMANO K, SHIBAMOTO T, et al. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties[J]. Food Chemistry, 2005, 91(1): 131-137. DOI:10.1016/j.foodchem.2004.05.056.
  [23] SILVAN J M, MINGO E, HIDALGO M, et al. Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp.[J]. Food Control, 2013, 29(1): 25-31. DOI:10.1016/j.foodcont.2012.05.063.
  [24] BRETTONNET A, HEWAITARANA A, DEJONG S, et al. Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork[J]. Food Chemistry, 2010, 121(4): 927-933. DOI:10.1016/j.foodchem.2009.11.021.   [25] HAGERMAN A E, RIEDL K M, JONES G A, et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants[J]. Journal of Agricultural and Food Chemistry, 1998, 46(5): 1887-1892. DOI:10.1021/jf970975b.
  [26] ZHANG Wangang, XIAO Shan, SAMARAWEERA H, et al. Improving functional value of meat products[J]. Meat Science, 2010, 86(1): 15-31. DOI:10.1016/j.meatsci.2010.04.018.
  [27] BURT S. Essential oils: their antibacterial properties and potential applications in foods: a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253. DOI:10.1016/j.ijfoodmicro.2004.03.022.
  [28] JUGREET B S, SUROOWAN S, MAHOMOODALLY M F. Chemistry, bioactivities, mode of action and industrial application of essential oils[J]. Trends in Food Science and Technology, 2020, 101: 89-105. DOI:10.1016/j.tifs.2020.04.025.
  [29] JULKUNEN-TIITO R. Phenolic constituents in the leaves of northern willows, methods for the analysis of certain phenolics[J]. Journal of Agricultural and Food Chemistry, 1985, 33(2): 213-217. DOI:10.1021/jf00062a013.
  [30] OROIAN M, ESCRICHE I. Antioxidants: characterization, natural sources, extraction and analysis[J]. Food Research International, 2015, 74: 10-36. DOI:10.1016/j.foodres.2015.04.018.
  [31] GARCIA-SALAS P, MORALES-SOTO A, SEGURA-CARRETERO A, et al. Phenolic-compound-extraction systems for fruit and vegetable samples[J]. Molecules, 2010, 15(12): 8813-8826. DOI:10.3390/molecules15128813.
  [32] AUMEERUDDY-ELALFI Z, LALL N, FIBRICH B, et al. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro[J]. Journal of Food and Drug Analysis, 2018, 26(1): 232-243. DOI:10.1016/j.jfda.2017.03.002.
  [33] SULAS L, PETRETTO G L, PINTORE G, et al. Bioactive compounds and antioxidants from a Mediterranean garland harvested at two stages of maturity[J]. Natural Product Research, 2017, 31(24): 2941-2944. DOI:10.1080/14786419.2017.1305384.
  [34] SAHARKHIZ M J, OMIDBAIGI R, SEFIDKON F. The effects of different harvest stages on the essential oil content and composition of ajowan (Trachyspermum ammi Sprague) cultivated in Iran[J]. Journal of Essential Oil Bearing Plants, 2005, 8(3): 300-303. DOI:10.1080/0972060X.2005.1064345.
  [35] VUORELA S, SALMINEN H, M?KEL? M, et al. Effect of plant phenolics on protein and lipid oxidation in cooked pork meat patties[J].Journal of Agricultural and Food Chemistry, 2005, 53(22): 8492-8497. DOI:10.1021/jf050995a.   [36] MASUDA T, AKIYAMA J, FUJIMOTO A, et al. Antioxidation reaction mechanism studies of phenolic lignans, identification of antioxidation products of secoisolariciresinol from lipid oxidation[J]. Food Chemistry, 2010, 123(2): 442-450. DOI:10.1016/j.foodchem.2010.04.065.
  [37] YOGESH K, YADAV D N, AHMAD T, et al. Recent trends in the use of natural antioxidants for meat and meat products[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(6): 796-812. DOI:10.1111/1541-4337.12156.
  [38] CHAN W, FAUSTMAN C, YIN M, et al. Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of H2O2 and superoxide anion[J]. Meat Science, 1997, 46(2): 181-190. DOI:10.1016/S0309-1740(97)00014-4.
  [39] JO C, JIN S K, AHN D U. Color changes in irradiated cooked pork sausage with different fat sources and packaging during storage[J]. Meat Science, 2000, 55(1): 107-113. DOI:10.1016/S0309-1740(99)00132-1.
  [40] JONGBERG S, T?RNGREN M A, GUNVIG A, et al. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork[J]. Meat Science, 2012, 93(3): 538-546. DOI:10.1016/j.meatsci.2012.11.005.
  [41] YOGESH K, ALI J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4±1 ℃) storage[J]. Journal of Food Science and Technology, 2014, 51(8): 1547-1553. DOI:10.1007/s13197-012-0672-5.
  [42] RICE-EVANS C, MILLER N, PAGANGA G. Antioxidant properties of phenolic compounds[J]. Trends in Plant Science, 1997, 2(4):
  152-159. DOI:10.1016/s1360-1385(97)01018-2.
  [43] MUCHUWETI M, KATIVU E, MUPURE C, et al. Phenolic composition and antioxidant properties of some spices[J]. American Journal of Food Technology, 2007, 2(5): 414-420. DOI:10.3923/ajft.2007.414.420.
  [44] OZSOY N, CANDOKEN E, AKEV N. Implications for degenerative disorders: antioxidative activity, total phenols, flavonoids, ascorbic acid, beta-carotene and beta-tocopherol in Aloe vera[J]. Oxidative Medicine and Cellular Longevity, 2009, 2(2): 99-106. DOI:10.4161/oxim.2.2.8493.
  [45] HASHEMI S M B, KHORRAM S B, SOHRABI M. Essential oils in food processing: chemistry, safety and applications[M]. Chichester: John Wiley and Sons, 2017: 247-265. DOI:10.1002/9781119149392.ch8.
  [46] MOURE A, CRUZ J M, MU?EZ M J. Natural antioxidants from residual sources[J]. Food Chemistry, 2001, 72(2): 145-171. DOI:10.1016/s0308-8146(00)00223-5.   [47] ENGEL E, RATEL J, BOUHLEL J, et al. Novel approaches to improving the chemical safety of the meat chain towards toxicants[J]. Meat Science, 2015, 109: 75-85. DOI:10.1016/j.meatsci.2015.05.016.
  [48] WANASUNDARA U N, SHAHIDI F. Antioxidant and pro-oxidant activity of green tea extracts in marine oils[J]. Food Chemistry, 1998, 63(3): 335-342. DOI:10.1016/s0308-8146(98)00025-9.
  [49] SHAHIDI F, JANITHA P K, WANASUNDARA P D. Phenolic antioxidants[J]. Critical Reviews in Food Science and Nutrition, 1992, 32(1): 67-103. DOI:10.1080/10408399209527581
  [50] BALOGH Z, GRAY J I, GOMAA E A, et al. Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties[J]. Food and Chemical Toxicology, 2000, 38(5): 395-401. DOI:10.1016/S0278-6915(00)00010-7.
  [51] TERENINA M B, MISHARINA T A, KRIDUNOVA N I, et al. Oregano essential oil as an inhibitor of higher fatty acid oxidation[J]. Applied Biochemistry and Microbiology, 2011, 47(4): 445-449. DOI:10.1134/S0003683811040181.
  [52] SAMPAIO G R, SALDANHA T, SOARES R A M, et al. Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage[J]. Food Chemistry, 2012, 135(3): 1383-1390. DOI:10.1016/j.foodchem.2012.05.103.
  [53] HUSSEIN A M, KAMIL M M, LOTFY S N, et al. Influence of nano-encapsulation on chemical composition, antioxidant activity and thermal stability of rosemary essential oil[J]. American Journal of Food Technology, 2017, 12(3): 170-177. DOI:10.3923/ajft.2017.170.177.
  [54] BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils: a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475. DOI:10.1016/j.fct.2007.09.106.
  [55] MARTINEZ L, CASTILLO J, ROS G, et al. Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties[J]. Antioxidants, 2019, 8(4): 86-101. DOI:10.3390/antiox8040086.
  [56] ASADBEGI M, YAGHMAEI P, SALEHI I, et al. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet-fed rats[J]. Metabolic Brain Disease, 2017, 32(3): 827-839. DOI:10.1007/s11011-017-9960-0.
  [57] SERRANO A, GONZ?LEZ-SARR?AS A, TOM?S-BARBER?N F A,
  et al. Anti-inflammatory and antioxidant effects of regular consumption of cooked ham enriched with dietary phenolics in diet-induced obese mice[J]. Antioxidants, 2020, 9(7): 639-656. DOI:10.3390/antiox9070639.   [58] AUMEERUDDY-ELAFI Z, GURIB-FAKIM A, MAHOMOODALLY M F.
  Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius[J]. Journal of Herbal Medicine, 2016, 6(2): 88-95. DOI:10.1016/j.hermed.2016.02.002.
  [59] MUNEKATA P E S, ROCCHETTI G, PATEIRO M, et al. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview[J]. Current Opinion in Food Science, 2020, 31: 81-87. DOI:10.1016/j.cofs.2020.03.003.
  [60] VALENZUELA A, SANHUEZA J, NIETO S. Natural antioxidants in functional foods: from food safety to health benefits[J]. Grasas y Aceites, 2003, 54(3): 295-303. DOI:10.3989/gya.2003.v54.i3.245.
  [61] BAGCHI D, BAGCHI M, STOHS S J, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention[J]. Toxicology, 2000, 148(2): 187-197. DOI:10.1016/s0300-483x(00)00210-9.
  [62] JIA Na, KONG Baohua, LIU Qian, et al. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage[J]. Meat Science, 2012, 91(4): 533-539. DOI:10.1016/j.meatsci.2012.03.010.
  [63] HALLIWELL B, RAFTER J, JENNER A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?[J]. The American Journal of Clinical Nutrition, 2005, 81(1): 268S-276S. DOI:10.1093/ajcn/81.1.268s.
  [64] ?LVAREZ D, DELLES R M, XIONG Y L, et al. Influence of canola-olive oils, rice bran and walnut on functionality and emulsion stability of frankfurters[J]. Food Science and Technology, 2011, 44(6): 1435-1442. DOI:10.1016/j.lwt.2011.01.006.
  [65] ?LVAREZ D, XIONG Y L, CASTILLO M, et al. Textural and viscoelastic properties of pork frankfurters containing canola-olive oils, rice bran, and walnut[J]. Meat Science, 2012, 92(1): 8-15. DOI:10.1016/j.meatsci.2012.03.012.
  [66] SALEH N T, AHMED Z S. Impact of natural sources rich in provitamin a on cooking characteristics, color, texture and sensory attributes of beef patties[J]. Meat Science, 1998, 50(3): 285-293. DOI:10.1016/S0309-1740(98)00003-5.
  [67] MC CARTHY T L, KERRY J P, KERRY J F, et al. Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties[J]. Meat Science, 2001, 57(2): 177-184. DOI:10.1016/S0309-1740(00)00090-5.   [68] SALEH E, MORSHDY A, ALI E, et al. Effects of olive leaf extracts as natural preservative on retailed poultry meat quality[J]. Foods, 2020, 9(8): 1017-1028. DOI:10.3390/foods908101.
  [69] SHAN Bin, CAI Yizhong, BROOKS J D, et al. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork[J]. Journal of the Science of Food and Agriculture, 2009, 89(11): 1879-1885. DOI:10.1002/jsfa. 3667.
  [70] AHN J, GRUM I U, MUSTAPHA A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef[J]. Food Microbiology, 2007, 24(1): 7-14. DOI:10.1016/j.fm.2006.04.006.
  [71] BANERJEE R, VERMA A K, DAS A K, et al. Antioxidant effects of broccoli powder extract in goat meat nuggets[J]. Meat Science, 2012, 91(2): 179-184. DOI:10.1016/j.meatsci.2012.01.016.
  [72] KANATT S R, CHANDER R, SHARMA A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat[J]. Food Chemistry, 2007, 100(2): 451-458. DOI:10.1016/j.foodchem.2005.09.066.
  [73] JO C, SON J H, SON C B, et al. Functional properties of raw and cooked pork patties with added irradiated, freeze-dried green tea leaf extract powder during storage at 4 ℃[J]. Meat Science, 2003, 64(1): 13-17. DOI:10.1016/S0309-1740(02)00131-6.
  [74] GORINSTEIN S, LEONTOWICZ H, LEONTOWICZ M, et al. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols[J]. Journal of Agricultural and Food Chemistry, 2008, 56(12): 4418-4426. DOI:10.1021/jf800038h.
  [75] AMAGASE H. Clarifying the real bioactive constituents of garlic[J].Journal of Nutrition, 2006, 136(3): 716S-725S. DOI:10.1093/jn/136.3.716S.
  [76] HAYES J E, STEPANYAN V, ALLEN P, et al. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages[J]. Food Science and Technology, 2011, 44(1): 164-172. DOI:10.1016/j.lwt.2010.05.020.
  [77] FAN Weijiao, CHEN Yunchuan, SUN Junxiu, et al. Effects of tea polyphenol on quality and shelf life of pork sausages[J]. Journal of Food Science and Technology, 2014, 51(1): 191-195. DOI:10.1007/s13197-013-1076-x.
  [78] RIZNAR K, ?TEFAN ?, GLASER R, et al. Antioxidant and antimicrobial activity of rosemary extract in chicken frankfurters[J]. Journal of Food Science, 2006, 71(7): C425-C429. DOI:10.1111/j.1750-3841.2006.00130.x.
  [79] SEBRANEK J G, SEWALT V J H, ROBBINS K L, et al. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage[J]. Meat Science, 2005, 69(2): 289-296. DOI:10.1016/j.meatsci.2004.07.010.   [80] NOWAK A, CZYZOWSKA A, KRALA L, et al. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat product[J]. Food Microbiology, 2016, 59: 142-149. DOI:10.1016/j.fm.2016.06.004.
  [81] 唐仁勇, 劉禹, 郭秀兰, 等. 添加苦荞粉对中式香肠抗氧化能力和品质的影响[J]. 食品科技, 2020, 45(9): 109-114. DOI:10.13684/j.cnki.spkj.2020.09.017.
  [82] Qi Suijian, ZHOU Delong. Lotus seed epicarp extract as potential antioxidant and antiobesity additive in Chinese Cantonese sausage[J]. Meat Science, 2013, 93(2): 257-262. DOI:10.1016/j.meatsci.2012.09.001.
  [83] 何丹, 王卫, 郭强, 等. 天然植物提取物对传统腌腊及酱卤肉制品特性的影响[J]. 肉类研究, 2019, 33(11): 18-23. DOI:10.7506/rlyj1001-8123-20190904-208.
  [84] 吴少雄, 刘光东. 茶多酚对腊肉制品抗氧化作用的研究[J]. 广州食品工业科技, 1999, 15(3): 42-43. DOI:10.13982/j.mfst.1673-9078.1999.03.013.
  [85] 刘文营, 李享, 成晓瑜. 添加西兰花种子水提物改善腊肉色泽和风味提高抗氧化性[J]. 农业工程学报, 2018, 34(21): 288-294. DOI:10.11975/j.issn.1002-6819.2018.21.036.
  [86] 彭雪萍. 苹果多酚对腊肉的抗氧化性能研究[J]. 肉类研究, 2007, 21(12): 18-19. DOI:10.3969/j.issn.1001-8123.2007.12.008.
  [87] 彭雪萍, 马庆一, 王花俊, 等. 苹果多酚在卤肉保鲜中的应用研究[J]. 肉类研究, 2006, 20(12): 9-11. DOI:10.3969/j.issn.1001-8123.2006.12.005.
  [88] 聂吉语, 李荣, 王颖, 等. 迷迭香提取物及其包结物在中式培根中的应用[J]. 食品工业科技, 2020, 41(1): 12-16; 24. DOI:10.13386/j.issn1002-0306.2020.01.003.
  [89] FERN?NDEZ-L?PEZ J, ZHI N, KURI V, et al. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs[J]. Meat Science, 2005, 69(3): 371-380. DOI:10.1016/j.meatsci.2004.08.004.
  [90] LEE E J, AHN D U. Quality characteristics of irradiated turkey breast rolls formulated with plum extract[J]. Meat Science, 2005, 71(2): 300-305. DOI:10.1016/j.meatsci.2005.03.017.
  [91] TANG X, CRONIN D A. The effects of brined onion extracts on lipid oxidation and sensory quality in refrigerated cooked turkey breast rolls during storage[J]. Food Chemistry, 2007, 100(2): 712-718. DOI:10.1016/j.foodchem.2005.10.042.
  [92] CHAN K W, KHONG N M, IQBAL S, et al. Cinnamon bark deodorised aqueous extract as potential natural antioxidant in meat emulsion system: a comparative study with synthetic and natural food antioxidants[J]. Journal of Food Science and Technology, 2014, 51(11): 3269-3276. DOI:10.1007/s13197-012-0818-5.
  [93] NAVEENA B M, SEN A R, VAITHIYANATHAN S, et al. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties[J]. Meat Science, 2008, 80(4): 1304-1308. DOI:10.1016/j.meatsci.2008.06.005.   [94] GARRIDO M D, AUQUI M, MART? N, et al. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers[J]. Food Science and Technology, 2011, 44(10): 2238-2243. DOI:10.1016/j.lwt.2011.07.003.
  [95] DE CARVALHO F A L, LORENZO J M, PATEIRO M, et al. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 ℃[J]. Food Research International, 2019, 125: 108554. DOI:10.1016/j.foodres.2019.108554.
  [96] RIBEIRO-SANTOS R, ANDRADE M, DE MELO N R, et al. Use of essential oils in active food packaging: recent advances and future trends[J]. Trends in Food Science and Technology, 2017, 61: 132-140. DOI:10.1016/j.tifs.2016.11.021.
  [97] IAMAREERAT B, SINGH M, SADIQ M B, et al. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material[J]. Journal of Food Science and Technology, 2018, 55(5): 1953-1959. DOI:10.1007/s13197-018-3100-7.
  [98] ZINOVIADOU K G, KOUTSOUMANIS K P, BILIADERIS C G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef[J]. Meat Science, 2009, 82(3): 338-345. DOI:10.1016/j.meatsci.2009.02.004.
  [99] OUSSALAH M, CAILLET S, SALMIERI S, et al. Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle[J]. Journal of Agricultural and Food Chemistry, 2004, 52(18): 5598-5605. DOI:10.1021/jf049389q.
  [100] SERRANO A, LIBRELOTTO J, COFRADES S, et al. Composition and physicochemical characteristics of restructured beef steaks containing walnuts as affected by cooking method[J]. Meat Science, 2007, 77(3): 304-313. DOI:10.1016/j.meatsci.2007.03.017.
  [101] DECKER E A, PARK Y. Healthier meat products as functional foods[J]. Meat Science, 2010, 86(1): 49-55. DOI:10.1016/j.meatsci.2010.04.021.
  [102] COFRADES S, SERRANO A, AYO J, et al. Characteristics of meat batters with added native and preheated defatted walnut[J]. Food Chemistry, 2008, 107(4): 1506-1514. DOI:10.1016/j.foodchem.2007.10.006.
  收稿日期:2020-12-25
  基金項目:四川省科技厅重点研发项目(2020YFN0147);成都市科技局技术创新研发项目(2019-YFYF-00180-SN);
  国家现代农业产业技术体系四川生猪创新团队项目(scsztd-3-007)
  第一作者简介:杨轶浠(1984—)(ORCID: 0000-0003-3667-0068),女,副研究员,硕士,研究方向为食品化学。
  E-mail: [email protected]
  通信作者简介:王卫(1958—)(ORCID: 0000-0001-6406-2161),男,教授,硕士,研究方向为肉类加工与贮藏。
  E-mail: [email protected]
其他文献
目的了解肾综合征出血热入院患者的分布特征,为肾综合征出血热的防治提供科学依据。方法运用描述性流行病学、集中度和圆形分布法对2003-2019年西安市某三级甲等医院肾综合征
随着新课程改革的不断深入,人们对初中数学教学也提出了更高的要求。发展思维能力是培养学生综合能力的核心,所以在初中数学教学过程中,教师要对传统的教学理念以及教学模式
新课改的不断推进,使小学语文教学内容发生相应的变化,小学语文教学必须适应新课改的各项要求,提高学生的语文素养。口语交际教学作为小学语文教学中一个重要内容,有了全新的
科技资源作为西部地区创新驱动发展的基础要素,其配置效率的高低不仅关系到新一轮西部大开发战略的成败,还影响到我国区域经济协调和高质量发展的进程。从投入—产出的视角,
目的:分析在缺血性脑卒中合并便秘的临床治疗中采取针灸治法的可行性。方法:选取2018年1月—2019年12月我院收治的68例缺血性脑卒中合并便秘患者作为研究对象,采用随机数表法
目的:评价椎动脉型颈椎病经颈夹脊穴温针灸+手法治疗的临床效果。方法:选取2016年5月~2018年6月在我院进行治疗的116例椎动脉型颈椎病患者,按随机数表法分为两组,各58例。对
伴随着我国现代经济的快速发展和素质教育的快速发展,学校教育越来越重视对学生综合能力的培养。数学是一门逻辑性较强的学科,小学生处于学习的关键时期,教师可以借助小组合
肉汤风味良好,营养丰富,而且具有一定的保健功效。本文从肉汤的营养价值、基本分类入手,重点阐述肉汤风味体系的形成机理、影响因素、肉汤在贮藏、加工过程中风味的变化规律
摘 要:为研究气调包装组分及气调包装协同复合抑菌剂对金鲳鱼的保鲜效果,将新鲜金鲳鱼分别经气调包装和气调包装协同壳聚糖复合涂膜处理,分析14 d冷藏过程中金鲳鱼感官品质、微生物指标和理化指标的变化规律。结果表明:采用气体组分CO2、N2、O2体积比80∶10∶10气调包装能有效抑制金鲳鱼肉菌落总数、嗜冷菌总数、总挥发性盐基氮(total volatile basic nitrogen,TVB-N)含
目的:观察维生素B1子午流注穴位注射治疗慢性阻塞性肺疾病(COPD)伴便秘的疗效。方法:选取本院呼吸科住院及门诊就诊的COPD伴有便秘的患者93例,随机分为两组。对照组45例,在CO