论文部分内容阅读
Massive multiple-input multiple-output(MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems(5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra-and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.
Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra-and inter-cell interference. overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provid e the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.