论文部分内容阅读
学生由初中升入高中将面临许多变化,受这些变化的影响,学生不能尽快适应高中学习,学习成绩大幅度下降,甚至过去的尖子生可能变为学习后进生。为此,笔者结合高一实际,从教材内容、教学方式、思维层次上看,初中数学和高中数学相比发生了比较大的变化,如何衔接初高中数学教学,是解决学生“数学难学”、教师“数学难教”的有效途径。
下面就初高中数学教学衔接问题谈谈自己的看法:
一、做好准备工作,奠定衔接基础
1.搞好入学教育
这是搞好衔接的基础工作,也是首要工作。这里要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。
2.摸清底数,规划教学
为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际、更具有针对性。
二、吃透初高中课标,衔接教材内容
1.利用旧知识,衔接新内容
高中数学与初中数学相比,知识的深度、广度、能力要求都是一次飞跃。这就要求必须掌握基础知识与技能,为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高,如二次函数值的求法、实根分布与参数变量的讨论、三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取措施查缺补漏,就必然会跟不上高中学习的要求。
高中教师要熟悉初中数学教材和课程标准,对初中的数学概念和知识的要求做到心中有数,这样高中数学新授课就可以从复习初中内容的基础上引入新内容。高一数学的每一节内容都是在初中基础上发展而来的,故在引入新知识、新概念时,要注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。如在讲任意角的三角函数时,要先复习初三学过的锐角三角函数的概念,进而提出任意角的三角函数概念而引入坐标定义法。
2.利用旧知识,挖掘加深新知识
如平面几何中,两条直线不平行就相交,到立体几何中就不一定是相交,也有可能异面。其实,有不少结论在平面几何中成立的,到了立体几何中就不一定成立了。如果能一步一步挖掘、深入,不仅可使学生巩固初中知识,更重要的是学生能逐步得以接受、理解新知识。
三、培养数学思维,衔接教学方法
1.认真组织教学,有效促进思维过渡
例如,在初一代数教学中,要着重发展学生的抽象概括能力;在初二数学教学中应加强推理的训练,发展形象思维的能力;在初三应通过数形结合和解题思路的探索活动,来发展学生思维的预见性、反省性和独创性,以达到为理论型抽象思维的发展做准备、打基础的目的。至于高中数学教学,则要进一步注意理论观点对数学思维活动的指导作用,注意从具体的实践活动中发展并丰富数学观念系统;在高二解析几何教学中,则应把发展学生的辩证思维能力当作重要的教学目的。
2.加强思维训练,培养联想转化能力
把一个复杂陌生的问题转化为简单熟知的问题加以解决,这是一种重要的数学思维方法,这种方法在数学中应用十分广泛。我们知道,立体几何研究的虽是空间图形,但它的大多数问题都可以归结为平面几何问题来解决。比如空间中平行的转化策略:证明线线平行、线面平行、面面平行;空间中垂直的转化策略:证明线线垂直、线面垂直、线线垂直。另外,空间中的角、距离及几何体都分别有一些转化策略。
3.重视知识归纳,培养逻辑思维能力
合理的知识结构,有助于思维由单维向多维发展,形成网络。在教学中不仅要指导学生掌握好各章节基础知识,还要让学生学会归纳、整理,真正做到“由薄到厚”又“由厚到薄”。在复习中要找到知识间的内在联系,形成清晰的知识结构图表,以便理清概念,使其系统化,便于记忆及掌握运用。同时对所学的思维方法和解题方法也应进行分类总结,找出其共性与个性,区别与联系,形成学生的解题思考方法。
总之,高中数学教学中要突出运算能力、空间想象能力、逻辑推理能力和分析问题、解决问题能力的培养,同时要渗透数形结合、函数与方程、等价与变换、划分与讨论的数学思想方法。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。所以,在高一数学的起步教学阶段抓好初高中数学教学衔接,便能使学生尽快适应新的学习模式,从而更高效、更顺利地接受新知和发展能力。
下面就初高中数学教学衔接问题谈谈自己的看法:
一、做好准备工作,奠定衔接基础
1.搞好入学教育
这是搞好衔接的基础工作,也是首要工作。这里要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。
2.摸清底数,规划教学
为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际、更具有针对性。
二、吃透初高中课标,衔接教材内容
1.利用旧知识,衔接新内容
高中数学与初中数学相比,知识的深度、广度、能力要求都是一次飞跃。这就要求必须掌握基础知识与技能,为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高,如二次函数值的求法、实根分布与参数变量的讨论、三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取措施查缺补漏,就必然会跟不上高中学习的要求。
高中教师要熟悉初中数学教材和课程标准,对初中的数学概念和知识的要求做到心中有数,这样高中数学新授课就可以从复习初中内容的基础上引入新内容。高一数学的每一节内容都是在初中基础上发展而来的,故在引入新知识、新概念时,要注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。如在讲任意角的三角函数时,要先复习初三学过的锐角三角函数的概念,进而提出任意角的三角函数概念而引入坐标定义法。
2.利用旧知识,挖掘加深新知识
如平面几何中,两条直线不平行就相交,到立体几何中就不一定是相交,也有可能异面。其实,有不少结论在平面几何中成立的,到了立体几何中就不一定成立了。如果能一步一步挖掘、深入,不仅可使学生巩固初中知识,更重要的是学生能逐步得以接受、理解新知识。
三、培养数学思维,衔接教学方法
1.认真组织教学,有效促进思维过渡
例如,在初一代数教学中,要着重发展学生的抽象概括能力;在初二数学教学中应加强推理的训练,发展形象思维的能力;在初三应通过数形结合和解题思路的探索活动,来发展学生思维的预见性、反省性和独创性,以达到为理论型抽象思维的发展做准备、打基础的目的。至于高中数学教学,则要进一步注意理论观点对数学思维活动的指导作用,注意从具体的实践活动中发展并丰富数学观念系统;在高二解析几何教学中,则应把发展学生的辩证思维能力当作重要的教学目的。
2.加强思维训练,培养联想转化能力
把一个复杂陌生的问题转化为简单熟知的问题加以解决,这是一种重要的数学思维方法,这种方法在数学中应用十分广泛。我们知道,立体几何研究的虽是空间图形,但它的大多数问题都可以归结为平面几何问题来解决。比如空间中平行的转化策略:证明线线平行、线面平行、面面平行;空间中垂直的转化策略:证明线线垂直、线面垂直、线线垂直。另外,空间中的角、距离及几何体都分别有一些转化策略。
3.重视知识归纳,培养逻辑思维能力
合理的知识结构,有助于思维由单维向多维发展,形成网络。在教学中不仅要指导学生掌握好各章节基础知识,还要让学生学会归纳、整理,真正做到“由薄到厚”又“由厚到薄”。在复习中要找到知识间的内在联系,形成清晰的知识结构图表,以便理清概念,使其系统化,便于记忆及掌握运用。同时对所学的思维方法和解题方法也应进行分类总结,找出其共性与个性,区别与联系,形成学生的解题思考方法。
总之,高中数学教学中要突出运算能力、空间想象能力、逻辑推理能力和分析问题、解决问题能力的培养,同时要渗透数形结合、函数与方程、等价与变换、划分与讨论的数学思想方法。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。所以,在高一数学的起步教学阶段抓好初高中数学教学衔接,便能使学生尽快适应新的学习模式,从而更高效、更顺利地接受新知和发展能力。