论文部分内容阅读
图像分割是机器视觉中的基础问题,基于阈值的图像分割算法依赖于参数调整,但参数调整容易受到局部最小值的影响且需要耗费大量时间,从而降低了分割算法的质量和效率。为了实现图像分割过程中的自适应阈值选择,提出了一种基于稀疏主成分分析和自适应阈值选择的图像分割算法。该算法首先利用稀疏主成分分析感知图像的噪声水平以自适应去噪,其次通过二维直方图感知图像的主干区域内容以自适应获得全局分割阈值,然后通过移动平均法的局部阈值分割算法对图像进行分割,最后将全局阈值分割和局部阈值分割图像结合,从而获得最佳的分割图像结果。在伯克