作物病害识别相关论文
因病害叶片图像的复杂多变性,较难准确分割病斑图像和提取到鲁棒的病害分类特征.现有的基于卷积神经网络(CNN)的作物病害识别方法......
卷积神经网络模型参数冗余太大,收敛速度慢,对硬件计算资源要求过高,导致适用性差,不适合布署在边缘侧的嵌入式设备上,且大多数识......
作物病害叶片图像分割是基于图像分析和计算机视觉的作物病害识别方法研究中的难题,是从原始病害叶片图像中提取出显著的感兴趣病......
精准识别作物病害的前提是精确提取其特征。为此,利用计算机图像处理技术,研究了黄瓜霜霉病的特征提取过程。使用高精度的光学设备......
基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应......