全测地相关论文
本文主要研究等距浸入到黎曼流形中的梯度近Yamabe孤立子和r-近Newton-Yamabe孤立子.运用Hopf极大值原理及子流形的基本方程,得到......
本文共分四章,主要研究了复射影空间和拟复射影空间中的全实子流形获得了一系列结果.第一章研究了复射影空间CPn的全实极小子流形,得......
本文研究某些子流形几何和特征值问题,内容分为四个部分.第一部分研究局部对称空间中极小子流形的刚性定理Yau S T在文献[1]中研究......
<正>设M~n为S~(n+1)中的n维紧致定向极小超曲面,M~n的第二变分的Jacobi算子为L=△+s+n,其中s是M~n的第二基本形式模长的平方,△为M......
期刊
CR-子流形理论是Bejancu A于上世纪七十年代所开创的一个数学领域,三十多年以来有了很大发展.许多学者研究了不同度量的不同流形的......
本文主要研究了局部对称伪黎曼空间Qpn+p中的完备类空线性Weingarten子流形Mn,利用广义极大值原理和改进了的Cheng-Yau算子L对Mn全......
学位
设x:Mn→Nn+p(c)为等距侵入,Nn+p(c)是截曲面为c的空间形式.h为x在Nn+p(c)中的第二基本形式,泛函的临界子流形方程(第一变分的欧拉-......
殆切触流形是微分几何研究的重要分支,在几何学中占有相当重要的地位.本学位论文主要以殆切触流形中的子流形为研究对象,系统地研......
本文研究了伪黎曼空间型中具有平行平均曲率向量的类空子流形,得到了这类空子流形的一个积分不等式及刚性定理.......
该文采用Elie Cartan活动标架法,研究了常曲率和拟常曲率Riemann流形的常平均曲率超曲面,得到了超曲面为全测地的一个充分条件和三......
该文研究了局部对称伪黎曼流形中的子流形,全文分为两章.在第一章中研究了n+p维局部对称伪黎曼流形中具有平行单位平均曲率向量的......
该文主要研究了黎曼流形的一类特殊的子流形,即局部对称共形平坦空间中具有平行平均曲率向量的紧致子流形,得到了几个拼挤定理:定......
本文主要研究了单位球面中子流形的曲率、拓扑性质和Mobius特征以及Willmore子流形、类空子流形和局部对称黎曼流形中超曲面的曲率......
本文有三部分内容. F-Yang-Mills泛函是Yang-Mills场的自然推广,第一部分主要研究F-Yang-Mills泛函的有关性质.我们给出F-Yang-M......
本文研究了拟复射影空间CQn+p中的全实伪脐子流形Mn的一些性质,采用活动标架场,通过估算子流形第二基本形式模长的平方的Laplacian,......
证明了Nn+pp(c)空间中紧致极大类空子流形当S≤-nc(3n+2)/(5n+2) 时, Mn为全测地子流形或为截曲率等于(1)/(3)c的子流形.特别地, n......
从数量曲率的角度,研究了全纯截面曲率为常数的K(a)hler流形的复子流形,得出了几个相应的内蕴积分不等式及其相关性质,推广了[1]、......
主要研究了黎曼流形中的等距浸入近Yamabe孤立子.使用Hopf极大值原理及子流形的基本方程,得到了近Yamabe孤立子是全测地或全脐的充......
期刊
Yau研究了常曲率空间中的紧致极小子流形,获得一个与Simons不等式类似的结果,该文将类似问题推广到局部对称空间中,得到了相关结论......
设Nn+p是截面曲率Kn满足1/2<δ≤Kn≤ 1的n+p维局部对称空问完备的δ-Pincing黎曼流形,Mn是Nn+p中的紧致极小于流形.讨论了这类子流......
讨论伪欧氏空间中的直纹面。利用活动标架法研究了直纹面的一些性质,包括极小性。全可展性,全测地性和全脐性,给出了直纹面是全可展性......
研究局部对称Lorentz流行中的2-调和类空子流形,得到2-调和等距浸入的平均曲率为零的充分条件,紧致超曲面以及常平均曲率超曲面的......
本文讨论了De SiRer空间S^n+p P(c)中的紧致极大类空子流形M^n的截面曲率的拼挤问题,通过估计第二基本形式模长平方的Laplaeian,得到截......
从数量曲率的角度,研究了全纯截面曲率为常数的Kaehler流形的复子流形,得出了几个相应的内蕴积分不等式及其相关性质,推广了[1]、[2]......
研究了δ-Pinching流形中具有平行第二基本形式的子流形,获得了这类子流形的第二基本形式模长平方的一个拼挤定理。......
本文研究爱因斯坦黎曼流形的全脐超曲面,给出它为全测地的或常曲率的充分条件。也研究全测地超曲面。......
对局部对称共形平坦黎曼流形中具有平坦法丛的极小子流形作了一些讨论,得到了极小子流形是全测地的两个充分条件.......
给复射影空间中完备全实极小子流形的一些特征,推广了这种空间中紧致全实极小子流形的若干结果。......
本文研究了常曲率空间的λ-迷向子流形,获得了此类子流形是伪脐的一个充要条件,讨论了在此条件下子空间是爱因斯坦流形时关于λ的......
设N^n+p是n+p维局部对称完备的拟常曲率黎曼流形.M^n是N^n+p中具有平行平均曲率向量的紧致子流形.讨论并给出了这类子流形关于第二基本......
用活动标架法研究拟常全纯截面曲率空间中的全实极小子流形,得到了关于第二基本形式模长‖B‖的Smions型积分不等式.......
设N^n+p是截面曲率KN满足1/2〈δ≤KN≤1的n+p维局部对称完备黎曼流形.M是N^n+p中n维紧致极小子流形.讨论了这类子流形关于Ricci曲率的......
本文把陈省身等的结论推广到了环绕空间是局部对称共形平坦的情形,即获得:设M~n是局部对称共形平坦黎曼流形N~(n+p)中的紧致极小子......
本文证明了:设M~n是复射影空间 CP~n 的紧致全实 n 维极小子流形,如果M~n 的第二基本形式长度的平方 S≤(n+1)/(1+((n-1)/2n)~(1/2......
研究了单位球面中具有平行平均曲率向量的子流形的第二基本形式模长平方的Pinching 问题,得到了优于Yau 和莫小欢的 Pinching 常数......
讨论单位球面中具有平行单位平均曲率向量子的流形问题,改进了莫波欠的两个结果。...
研究局部对称伪黎曼流形中的2-调和类空子流形,得到具有平行平均曲率向量子流形为极大的充分条件,紧致子流形的Simons型积分不等式......
S.Tanno[2],K.Yano 和 S.Ishihara[3]曾经证明了Sasaki 流形的任何不变子流形是极小的。后来 G.D.Ludden 在余维数为2的情况下证明......
本文讨论单位球面中具有平行单位平均曲率向量的子流形的第二基本形式长度拼挤问题,改进了已有的结论。......
特征矢量场属于某(κ,μ)-幂零分布的切触度量流形称为切触度量(κ,μ)空间,本文中我们证明了当k2+μ2≠0时,一个非Sasakian切触度......
本文研究了局部对称空间中的紧致子流形.通过计算子流形的第二基本形式长度的平方的Laplacian,削减了全测地子流形的充分条件“具有......
本文研究了复射影空间中的全实2-调和子流形问题.利用活动标架法,获得了这类子流形成为极小子流形的关于第二基本形式模长的Pinchi......
本文研究了一般伪黎曼流形中的2-调和类空子流形的有关性质.利用活动标架法和Hopf原理,给出了2-调和子流形是极大的几个充分条件,......
本文研究了复射影空间中具有2-调和的一般子流形问题.利用活动标架法,获得了这类子流形成为极小子流形的Pinching定理和Simons型积......
探讨C-和S-流形的不变子流形的基本特征.给出了一个S-或C-流形成为全测地子流形的充要条件.另外给出Ricci曲率张量的度量式表示.......
局部对称伪黎曼流形中2-调和类空子流形的刚性性质被研究.通过活动标架法和Hopf原理,证明了这类子流形在常平均曲率或者紧致的情况......
研究n+p维局部对称完备黎曼流形中具有平行平均曲率向量的n维紧致子流形,得到这类子流形关于第2基本形式模长平方的一个拼挤定理,推广......
设N^m+p是截面曲率KN满足1/2〈δ≤KN≤1的n+p维局部对称空间完备的δ-Pinching黎曼流形,M^n是N^m+p中的紧致极小子流形。讨论了这类子......