渐近非扩张半群相关论文
第一章综述了渐近非扩张映象的不动点逼近问题的研究意义和研究现状。第二章设E是具有一致G(?)teaux可微范数的实Banach空间,D是E的非......
众所周知,均衡问题及算子半群理论是当前非线性分析领域中两个热门问题。均衡问题能够为我们提供统一的结构去研究在经济学、物理......
不动点理论是目前正在迅速发展的非线性泛函分析理论的重要组成部分,它与近代数学的许多分支有着紧密的联系.特别是在建立各类方程......
本文结合分裂可行性问题和均衡问题,在Hilbert空间上研究几类分裂均衡问题,包括分裂等式混合均衡问题、分裂一般均衡问题和分裂三......
不动点理论是泛函分析的重要研究课题之一,在微分方程、非线性分析、数理经济学等学科中都有许多重要应用,压缩算子的不动点定理是不......
在具有一致正规结构且其范数是一致Gateaux可微的实Banach空间中,为寻求渐近非扩张半群的公共不动点,引入了一种新的迭代序列.在......
研究了与渐近非扩张半群不动点问题相关的分裂等式混合均衡问题.在等式约束下,为同时逼近两个空间中混合均衡问题和渐近非扩张半群......
针对均衡问题和渐近非扩张算子半群的公共元问题,提出一个新的迭代算法,在合适的条件下,证明了由此迭代算法生成的序列的强收敛性......
研究了Hilbert空间中渐近非扩张半群不动点的粘性逼近,得到了渐近非扩张半群不动点的强收敛定理。......
该文在Hilbert空间中,利用CQ方法证明了修正渐近非扩张半群的Ishikawa迭代序列的强收敛性,此结果推广并改进了一些相关结论.......
在具有一致凸性质的一致G可微范数的Banach空间中,通过隐粘性迭代方法和显粘性逼近方法,证明了渐进非扩张半群公共不动点的强收敛......