【摘 要】
:
当下,网络短视频、电商广告、新闻资讯等信息量迅猛增长,如何构建更精准、更个性化的推荐系统已成为各大电商平台、音视频门户网站关注的焦点。而推荐系统中最核心的部分在于其使用的推荐算法,算法的优劣直接影响推荐系统的好坏。虽然诸如协同过滤等传统推荐算法已经历了多年的发展,但面对当前越来越多的稀疏性与冷启动问题时,其较难以从根本上解决。而另一方面,由于近年来图神经网络的发展以及其与推荐系统交互图结构的高度契
论文部分内容阅读
当下,网络短视频、电商广告、新闻资讯等信息量迅猛增长,如何构建更精准、更个性化的推荐系统已成为各大电商平台、音视频门户网站关注的焦点。而推荐系统中最核心的部分在于其使用的推荐算法,算法的优劣直接影响推荐系统的好坏。虽然诸如协同过滤等传统推荐算法已经历了多年的发展,但面对当前越来越多的稀疏性与冷启动问题时,其较难以从根本上解决。而另一方面,由于近年来图神经网络的发展以及其与推荐系统交互图结构的高度契合性,多种基于图神经网络的推荐算法应运而生。然而,这些算法或多或少面临系统扩展性问题,另有部分算法在应对冷启动与利用节点特征两方面难以兼得。对此,本文开展了基于图神经网络的推荐算法研究,具体的研究内容如下:(1)针对真实推荐环境下可能存在的匿名用户的情况,本文首先开展了基于图卷积网络的匿名节点分类的研究,设计了不同匿名环境下的统一化特征处理机制。同时,针对推荐系统二分异质图推理问题,本文研究并设计了基于图自编码器的二分异质图推理模型,通过跨域消息传递实现了对二分图节点的特征表示能力,并创新性地引入双任务学习机制,有效提高了模型的推理能力。(2)针对图卷积神经网络特征“过平滑”问题,本文从层传播的角度出发,在前一项研究基础上引入了多层特征聚合,在一定程度上缓解了这一问题,有效提升了模型的分类表现。同时本文从降低模型复杂度的角度入手,引入了级联式学习策略,优化了模型内存占用,以较小的精度损失换取了空间上的优化。(3)基于以上两项研究工作,本文提出了基于图神经网络的冷启动双任务学习推荐算法。通过分析冷启动问题的内在机理,本文确定了以归纳式学习为核心的处理流程,并通过引入的闭合子图提取与节点重标记实现了对图外节点的特征表示能力。在此基础上,本文创新型地提出了子图中心性学习策略,通过引导模型预测子图内节点“角色”,以期最大程度学习到子图的拓扑结构。另一方面,本文通过引入双任务学习机制,设计以中心性学习与评分预测的协同优化策略,进一步提高模型的表示能力。本文在三个引文网络数据集上验证了本文提出的二分异质图推理模型,该模型超越了基线模型与现有主流方法。此外,本文在多个主流推荐系统数据集上对本文提出的图神经网络推荐算法进行了实验,并与多个主流方法作对比,结果表明本文的算法在不同数据集下均具有显著的推荐优势。
其他文献
机器学习已然成为现代科学的基石,它被广泛地应用于所有科学领域。然而,它于计算电磁学(CEM,Computation Electromagnetics)算法相结合还有待研究。在本文中,我们将基于深度学习(DL,Deep Learning)的机器学习方法与传统的FDTD(Finite-Difference TimeDomain)算法相结合,研究DL-FDTD算法原理和实现技术,并应用在计算电磁学中。本
目的:本研究旨在系统评价机器学习算法预测脓毒症发病及病死率研究的方法学和预测模型,提出机器学习预测研究报告标准,并以此为基础创建危重症患者数据集,进行脓毒症发病和预后预测研究。方法:研究分为两个部分。第一部分为系统评价(systematic review)研究。检索中国知网、万方数据库、Pub Med、Web of Science等数据库中机器学习算法用于脓毒症预测文献,时间从2010年1月至20
随着互联网的普及和飞速发展,网络安全问题也愈发重要。Web日志记录了网站的运行信息和用户的所有操作,通过日志分析开发者可以检测出网络的异常流量,及时发现漏洞。由于传统的基于规则和模式匹配的日志分析技术对海量数据的处理效果不佳,也无法应对形式复杂多样的网络攻击,将机器学习和深度学习技术应用到日志分析领域是大势所趋。本文提出了一种自定义特征的方法,对比于其他基于统计信息的特征提取,该方法将特征提取的重
多智能体系统是一种复杂的网络系统,其应用涉及了多个领域,如无人机协作控制、传感器网络设计以及机器人编队等。近年来,多智能体系统的一致性问题受到了许多学者的广泛关注。如何设计恰当的协议,使得系统内个体间的状态能够达到一致是研究多智能体一致性的关键问题。目前对于一致性的研究大都只涉及一阶、二阶,缺乏对具有有限子群的高阶系统尺度一致性的研究。本文主要研究具有有限子群的离散时间三阶多智能体系统的尺度一致性
机器学习的一个核心主题是顺序决策,这是要求在不确定的环境中依据决策规则选择要执行的一系列动作,以实现某些目标的任务。作为机器学习的重要子领域,强化学习提供了一种解决这类任务的正式框架。然而,解决比较复杂的任务时,它所需要的样本数量难以忍受;另外,当任务发生改变时,原来的解决方案就无法应用,学习必须要重新开始。这些问题促使我们利用现有知识来改善强化学习过程。近年来,迁移学习作为一种利用先验知识来加速
深度神经网络由于具有强大特征提取和表征的能力,已经在计算机视觉、自然语言处理、智能决策等方面展现了卓越的性能。近年来,深度神经网络的设计引起了研究人员的广泛关注,各种高性能和高效率的神经结构不断涌现。但是手工设计一个神经网络需要大量的专家经验和反复的实验验证。因此,神经结构搜索方法被提出来在给定的任务上自动设计神经结构。基于梯度的one-shot神经结构搜索方法在高效实现结构搜索的同时,还具有不错
在高压变电设备的放电检测、航空发动机结构无损检测等领域的超声波探测应用中,往往要求超声波传感器需要具备体积小、质量轻、前置无源、抗电磁干扰、耐高温高压的特性。本论文针对光纤MOEMS(Micro-Opto-Electro-Mechanical Systems)超声传感器的信号解调需求,研究了一种基于光纤EFPI(Extrinsic FabryPerot Interferomter)传感器的高速四通
非合作信号解析技术已广泛应用于电子信息对抗等领域。非合作的接收机通过这种技术利用截获信号取得发射机的一些信息,以实现破译敌方情报或干扰敌方通信等目的。在现代数字通信系统中,数据通常以帧为单位进行传输。合作方的接收端首先会采用适当的算法并结合帧结构的信息来获取帧同步。然而这些对于非合作的接收机来说是未知的,所以其需要利用截获信号对帧结构进行识别。在获取帧同步后,倘若非合作的接收机想要进一步获取数据部
对于室内环境三维模型构建,目前常规方法是使用三维激光扫描仪来实现,但是三维激光扫描仪不仅价格昂贵而且体积较为庞大,同时构建三维模型耗时较长。视觉同步定位与地图构建(SLAM)技术具有精度高、速度快、系统体积小的特点,本文对基于深度相机的视觉SLAM算法进行了深入研究学习,并将视觉SLAM技术结合建筑抹灰机器人应用于建筑室内环境建模,解决了建筑室内三维整体模型实时构建问题,并且对得到的三维模型进行后
生活在当下,神经网络对于我们而言一定算不上陌生。无论是作为学者还是工程师,在他们的研究中一定会发现神经网络的身影。医学领域、军事领域甚至金融领域均采用了神经网络技术,不难看出它具有很强的适用性。将耦合的网络模型同单一的网络模型进行比较可以发现,前者具有更高的生物可靠性,更贴近真实神经系统的组成。有关于这种模型的研究正在逐步展开,现在已有大量实验证实它能够高度概括大脑对信息的并行处理。另一方面,无论