论文部分内容阅读
随着计算机技术的快速发展,利用人工智能和图像处理技术辅助医疗诊断日益受到关注。在医疗临床检验中,白细胞的检验对许多疾病的诊断有着重要的价值。目前医院所采用的检测方法主要是血细胞分析仪与人工镜检,即先用血细胞分析仪进行初步筛查并判断有无数量上的异常,若有,则进行人工镜检。由于人工镜检效率低,分类速度慢,因此外周血白细胞图像自动分类识别技术具有较高的实用价值。论文基于深度学习的方法设计了一种外周血白细胞图像自动分类识别的方案。首先,利用高倍显微镜观察外周血细胞涂片并利用相机拍摄含有大量白细胞的血细胞图像。采用中值滤波和双边滤波对图像进行预处理,并分析了 RGB和HLS两种色彩空间和常见的阈值分割方法,然后利用改进的最大类间方差法对L分量图像进行初步分割,利用形态学方法处理初分割后的图像,得到完整的单个白细胞图像。其次,对得到的白细胞图像数据集进行整理分析,剔除染色错误或染色失败的图像。针对白细胞图像数量类间不平衡的问题,采用平移的方法对原始数量较少的白细胞类进行过采样。然后按照一定比例将白细胞图像分为训练集和测试集,并利用旋转、对比度增强等数据增强方法对两类数据进行扩增,建立本课题的数据集。最后,根据现有的深度神经网络架构思路,搭建白细胞的分类模型。该模型共包含六层卷积层、三层池化层和三层全连接层,利用制备的训练集、验证集进行训练验证,并通过测试集去评估网络模型的性能。然后,将实验结果可视化。测试结果表明,白细胞图像平均识别率为92.87%,满足既定目标。利用卷积神经网络的方法对白细胞进行分类识别,不仅避免了精准分割白细胞细胞核和细胞质的复杂性以及人工选择特征的个体化差异对最后分类结果造成的不良影响,而且取得了令人满意的准确率,实现了真正的端到端分类识别。