分次代数上的融合群

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:zhengziwei5
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper, we define fusions on block extensions and partially extend some results of Puig on block fusion.Our main results are Propositions 2.0.7, 2.0.8, 2.0.11 and 2.0.12.  In this paper, we define fusions on block extensions and partially extend some results of Puig on block fusion.Our main results are Propositions 2.0.7, 2.0.8, 2.0.11 and 2.0.12.  
其他文献
平板振动和屈曲的研究是应用力学最重要的研究领域之一,己受到许多研究者的关注,而有限元局部并行计算是当今科学计算的热点之一,是数值求解许多偏微分方程的一个强有力的计算方法,针对具有局部奇性/低光滑性的问题,局部并行计算的表现尤其突出.本文研究平板振动重调和特征值问题的有限元局部并行方法,首先证明平板振动重调和方程/特征值问题有限元解的局部先验误差估计,其次,结合局部亏量校正和移位反迭代建立基于局部计
学位
本文提出了以圆柱螺旋线、圆锥螺旋线和空间Bezier曲线为轴线,构造圆柱螺旋管道、圆锥螺旋管道和Bezier管道的方法,在两个轴异面管道的轴线可用上述空间曲线光滑拼接的条件下
本文中,采用分布式控制的观点,考虑了双组份Camassa-Holm方程在某固定范围内分布式精确控制问题和渐近稳定性问题。为了得出双组份Camassa-Holm方程的分布式精确控制和渐近稳定
在控制系统中普遍存在高度的非线性、参数的不确定性和外界扰动等因素影响控制系统的稳定性。生态系统具有良好的抗干扰性和自适应性,能有效的吸收外界扰动,提高系统抵抗环境变
本文中,我们考虑三维的可压缩Navier-Stokes-Maxwell方程,其中背景密度不是常数,当背景密度nb(x)在正的常状态附近作小扰动时,我们利用压缩映像原理证明了稳态解的存在性.进一步,
酗酒是当前危害人类健康的主要行为之一,由于遗传因素或者抑郁和其他心理健康状况, 人们往往不需要社交生活, 主动寻求酒精的“帮助”, 称为主动饮酒. 主动饮酒成为酗酒的一
本文研究拟线性椭圆型p-Laplace方程{-Δpu+|u|p-2u=f(u)x∈RN,u>0x∈RN.u→0,|x|→+∞}的正解.其中N>p>2,f∈C1(R+,R)是次临界的.在RN上嵌入W1,p(RN)→Lq(RN)缺乏紧性,其中p≤q<p*,故山路引理
微结构固体中非线性波方程的研究对地震学、地质勘探以及固体材料的无损检测等学科领域都具有重要的理论意义和实际应用价值。目前,对该问题的研究已成为应用数学的热门问题,并
研究了正则半群的子半群格的相关性质及特征. 得到了正则半群的全子半群格构成链的充分必要条件, 以及纯正半群的全子半群格构成链的充分必要条件.通过对纯正半群的正则子半