论文部分内容阅读
与传统材料相比,高温超导材料因具有高的临界转变温度、无阻载流和完全抗磁等特点在交通运输、医疗、通讯、能源等领域具有重要的应用前景。对于薄膜类高温超导材料,制成的滤波器、量子干涉器等被广泛应用到信息、军事、科学研究等前沿领域,成为世界各国争相抢占的新技术高地。其中最具代表性的YBa2Cu3O7-x(YBCO)高温超导体转变温度90K左右,在高磁场下具有非常优异的载流密度,进而成为20T左右高场磁体制备的首选材料。但是这种材料为氧化物陶瓷,制备过程中不可避免会产生一些微裂纹、孔洞等缺陷,影响该材料临界电流大小的同时,改变了其所承受的电磁力分布,因此,超导材料裂纹尖端临界电流的分布特征成为弄清其在电磁场中力学行为的基础性问题之一。近年来,兰州大学通过理论建模预测出超导材料裂纹尖端临界电流的分布具有奇异性,且奇异性的阶数为“-1”。为了对这一理论结果进行预测,兰州大学采用在YBCO超导块材制造人工裂纹,通过测试裂纹周围磁场分布的方式反推出裂纹尖端临界电流分布的奇异性特征,并给出奇异性的阶数为“-1.37”。尽管该结果证实了裂纹尖端电流分布的奇异性,但是其阶数与理论预测差别较大,主要原因在于超导块材厚度较大,人工开设的裂纹宽度超过1mm,且裂纹周围仅布置有限个磁场探头使得测量的精度不高。本文利用磁光显微技术对YBCO薄膜微米量级的裂纹附近磁场分布进行实验测量,并通过二维傅里叶变换反演得到裂纹附近的电流密度分布,验证了裂纹尖端电流密度的奇异性的基础上,获得了更加接近“-1”次的奇异性结果,证明了早期理论预测的可靠性。本论文主要开展的工作如下:首先,组建了极低温磁光实验平台,实现了基于法拉第效应YBCO薄膜裂纹附近磁场分布的全场测量,通过二维傅里叶变换给出了电流密度的分布特征。在计算过程中:利用汉宁窗口低通滤波器消除实验过程中由CCD相机产生的高频噪声,提高了实验数据的准确度;接着提出了一种磁场灰度自适应标定方法,解决了非均匀照明的问题,扩大了实验的可用视场范围;之后通过将电流密度计算结果与模拟值进行对比,证实了计算程序的可靠性。此外,利用双波长彩色磁光法得到了裂纹周围磁场增大的过程中裂纹周围磁场与外加磁场方向一致,并不会产生反向磁通分布的结论。提出了预偏角的方法,增大了磁光观测法对小磁场测量的灵敏度。其次,基于自行搭建的实验平台,获取了YBCO薄膜裂纹附近的磁光图像,并利用编写好的程序计算出了裂纹附近的磁场和电流密度分布。通过对电流密度的分析,发现YBCO薄膜裂纹尖端附近电流密度的对数值,与该点到裂纹尖端的距离对数值成斜率接近“-1”的一次函数关系,从而上证实了电流密度具有奇异性且其阶数为“-1”的理论预测的正确性。此外,还发现裂纹尖端附近不同方向的电流密度也呈现“-1”次的奇异性。最后,开展了不同温度和不同磁场条件下,YBCO薄膜裂纹附近的磁光观测实验。得到了裂纹附近的磁场和电流密度分布,结果显示在不同温度和磁场下,裂纹尖端电流密度依然具有“-1”次奇异性。以上这些结果表明,超导材料裂纹尖端电流密度的奇异性及奇异性阶数为“-1”的结论不随外界各种条件的改变而发生变化。