【摘 要】
:
本研究针对滨海粘质盐土存在的土壤孔隙状况不良、土壤饱和导水率低,以及引黄灌区淤积泥沙难以处理的问题,将引黄淤积泥沙作为改良材料,研究配沙对粘质盐土大孔隙和饱和导水率影响。通过室内的土壤泥沙颗粒分析试验、水分特征曲线测定试验、饱和导水率测定试验、模拟土柱盐分淋洗试验,研究土壤颗粒组成变化与土壤分形维数、土壤大孔隙比例、土壤饱和导水率以及脱盐效率之间的关系,并通过田间试验加以验证。本研究主要成果如下:
论文部分内容阅读
本研究针对滨海粘质盐土存在的土壤孔隙状况不良、土壤饱和导水率低,以及引黄灌区淤积泥沙难以处理的问题,将引黄淤积泥沙作为改良材料,研究配沙对粘质盐土大孔隙和饱和导水率影响。通过室内的土壤泥沙颗粒分析试验、水分特征曲线测定试验、饱和导水率测定试验、模拟土柱盐分淋洗试验,研究土壤颗粒组成变化与土壤分形维数、土壤大孔隙比例、土壤饱和导水率以及脱盐效率之间的关系,并通过田间试验加以验证。本研究主要成果如下:(1)引黄泥沙与粘质盐土颗粒组成差异明显,将引黄泥沙添加到粘质盐土中,可有效降低粘质盐土的粘粒含量,增加极细砂粒含量,进而影响粘质盐土土壤分形维数。土壤分形维数与粘粒含量呈明显的正相关关系,与极细砂粒含量呈明显的负相关关系。(2)配沙量增加,粘质盐土大孔隙比例呈线性增加,土壤饱和导水率呈指数形增大。土壤中的粘粒含量与土壤大孔隙和饱和导水率呈显著负相关关系,极细砂粒含量与土壤大孔隙和饱和导水率呈显著正相关关系。土壤分形维数与土壤大孔隙和饱和导水率显著相关,采用土壤分形维数估算土壤大孔隙和饱和导水率的精度,比采用粘粒和极细砂粒更高。(3)土壤饱和导水率与土壤大孔隙比例呈指数函数关系,土壤脱盐效率与土壤饱和导水率呈幂函数关系。添加引黄泥沙可以提高粘质盐土大孔隙比例,增大土壤饱和导水率,显著提升土壤脱盐效率,加快土壤中的盐分淋洗。(4)添加引黄泥沙可有效改变田间处理的颗粒组成,配沙量增加,田间处理的粘粒含量逐渐降低,极细砂粒含量逐渐增加。用田间数据对室内模拟试验的所得回归方程进行验证,结果表明,通过粘粒含量预测分形维数、分形维数预测土壤大孔隙比例、分形维数预测土壤饱和导水率结果较为精确。(5)粘质盐土0-20cm土层中添加引黄泥沙,可以有效降低粘质盐土小麦根系活动层(0-40cm)的土壤含盐量,提高土壤水分运动性,加快土壤盐分淋洗。田间小麦三年产量表明,添加引黄泥沙可以有效提高粘质盐土的小麦产量,其中处理10kg/m~2和15kg/m~2的小麦产量增长最明显。
其他文献
抗生素由于杀菌抑菌的作用被广泛应用于人类医疗、畜禽养殖和食品加工领域。但抗生素生物利用率低,30-90%的抗生素以原形或代谢物形式被排放到环境中,给生态环境和人类健康造成巨大威胁,寻找抗生素的高效去除方法是当务之急。高级氧化法是在催化材料作用下氧化剂分解产生活性基团降解有机污染物的方法,因修复成本低、效率高、周期短等优势成为污染治理的首选方法之一,其中氧化剂和催化剂的选择是关键。过硫酸盐与过氧化尿
在过去的百年间,全球迎来了工业科技的大爆发,使得人们的生活方式发生了翻天覆地的变化,带来各种便利的同时,也导致了全球范围的能源环境危机。因此实现能源系统低碳化的转型和绿色发展迫在眉睫。目前化学工业中超过90%以上产品都是基于催化剂来生产的。通过催化能够降低各类反应的能垒,实现更高效的反应,因此催化技术在绿色工业和能源转化领域具有无尽潜能。开发更高效廉价绿色的催化剂不仅能促进技术革命改善工业结构,还
醇是最丰富的有机化合物之一,羟基在天然产物中广泛存在。醇也是重要的合成中间体,容易被引入或转化为含有多种官能团的产物。虽然醇的转化一直是有机合成中的热点问题,但是由于C-O键的高解离能和高动力学能垒导致醇的直接还原和脱水醚化都难以实现。因此将醇活化成活泼的中间体再进行转化是应用较多的路径,但是两步转化法常导致原子利用率低、废物增加、成本升高等问题。在已开发的醇直接催化转化体系中,以金属配合物或Le
催化转移加氢是有机合成中常用的一种加氢方法。与直接使用氢气的加氢过程相比,催化转移加氢采用非氢气储氢化合物为氢供体,具有安全性高、反应温度低、设备要求低和选择性高等优点。催化转移加氢的供氢体有多种选择,但都需要特定催化剂的活化。相对于均相催化剂,多相催化剂具有结构稳定、易于分离等优点,在催化转移加氢领域有较广泛的应用前景。到目前为止,各种多相催化剂如贵金属、金属氧化物、过渡金属及其合金已被广泛报道
精氨酸(arginine,Arg)甲基化作为蛋白质翻译后修饰的重要类型之一,可以调节多种生物过程并影响各种细胞的生命活动。催化精氨酸甲基化的酶称为蛋白质精氨酸甲基转移酶(PRMTs)。精氨酸甲基化所引起的生物学效应(如:基因的激活与抑制)取决于底物精氨酸的甲基化状态,该状态受到PRMTs产物特异性的控制。根据催化生成产物的不同,PRMTs可以分为三种类型,其中I型PRMTs能够催化生成不对称的二甲
5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)是重要的表观遗传修饰物,对基因的表达调控具有重要作用。异常的羟甲基化状态可能会影响染色质结构,导致组织出现相关的疾病。若能对特定状态下的5hm C含量进行检测,就可以总结得到5hm C表达含量的变化规律,以此对生物体早期疾病进行有效的检测、诊断和预后。因此,对生物体基因组DNA中5hm C表达含量的灵敏检测十分重要。由于
食品包装对于防止食品的污染和浪费至关重要,其中活性包装能通过改变被包装食品的外部条件而为其提供更好的保护。抗菌包装和抗氧化包装是常见的活性包装,能通过抗菌剂、抗氧化剂等活性物质与食品作用,起到更好的保鲜作用,若能实现活性物质的缓释,则能为食品提供更长时间的保护作用。本课题基于多孔淀粉制备了缓释型活性包装膜,其中多孔淀粉作为茶多酚的缓释载体,对薄膜进行了表征并研究了其中活性物质茶多酚的释放情况和薄膜
果实软化与细胞壁多糖物质的降解密切相关,充足的能量供应会延缓果实软化、抑制细胞壁的降解。线粒体是细胞进行能量代谢的重要细胞器,也是产生和积累活性氧(reactive oxygen species,ROS)的重要场所。ROS诱导线粒体产生氧化应激,并导致线粒体DNA(mtDNA)的损伤和突变,造成线粒体衰老和凋亡。线粒体单链结合蛋白(mitochondrial single-stranded bin
随着塑料垃圾在环境中的持续累积,微塑料(MPs,<5 mm)的潜在生态风险已成为全球关注的热点环境问题之一,然而有关微米塑料及其持续碎裂后产生的更小尺寸的纳米塑料(NPs,<100 nm)对淡水环境的影响研究还十分有限。此外,广泛分布的MPs具有较强的疏水性、较大的比表面积,极易作为水环境中重金属等污染物的重要载体,进而影响污染物在环境中的迁移转化,对水生态健康造成潜在风险。因此,本文以淡水中广泛
灌浆套筒连接是装配式混凝土结构竖向构件普遍应用的连接方式,然而传统预制构件因灌浆套筒装配前内置,存在灌浆施工过程不可视、灌浆质量可控性差等问题,直接影响装配式混凝土结构的安装质量和受力性能。为了实现灌浆套筒连接节点的注浆过程可视、注浆质量可控,本文提出了一种带后浇区的灌浆套筒连接混凝土柱脚节点。为探究带后浇区的灌浆套筒连接混凝土柱脚节点的抗震性能,本文设计制作了1个整体现浇、1个传统套筒连接和6个