杜氏盐藻SA 134的生长和油脂合成对不同环境因子的响应

来源 :南京农业大学 | 被引量 : 0次 | 上传用户:dwddKTV
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The biofuels are receiving considerable attention as a substitute for petro diesel.For microalgae,the cell density or biomass and lipid contents are key components for biodiesel production.This study was conducted to develop favorable culture conditions for Dunaliella salina to maximize its biomass and lipid accumulation.The effect of salinity(0.5 to 2.5 M NaCl)on the cell population,biochemical composition,and lipid output of Dunaliella salina was examined under a controlled environment for 21 days.Maximum growth(6.57 × 107 to 7.17 × 107cells mL-1)potentials were observed at 1.5 to 2 M NaCl.The photosynthetic pigments and carbohydrates also showed trends similar to growth.The maximum carotenoid level(5.16 mg L-1)was recorded at 2 M NaCl.Almost all physicochemical parameters increased with increases in salinity,biomass(1231.66± 1.26 mg L-1)and lipid content(248.33 mg L-1),as recorded at 2 M NaCl.Based on fluorescence intensity,the highest values(11.84×107 cells mL-1)of neutral lipids and total lipids(22.28%)were recorded at optimum salinity levels.The present study suggests that a high biomass and lipid accumulation of Dunaliella salina SA 134 could be obtained at the 2 M NaCl level.Dunaliella salina(Dunaliella salina)is a potential source of biochemical compounds and subsequent lipids production for biodiesel.However lipid production from Dunaliella salina is dependent on biomass production rate and lipid content.To get more lipid as well as carotenoids production efficiency need to be improved.The aim of this study was to investigate different nitrogen sources with various concentration for improved microalgal growth and biochemical compounds production.In this study the culture was grown under three different nitrogen sources(NaNO3,NH4Cl and CO(NH2)2 concentrations(0.00025 M,0.1 M).The highest values(9.36 x 107 cells mL-1)at the time of harvest were found at 0.005 M NaNO3 fallowed by CO(NH2)2 and NH4Cl at 0.0005(8.33 and 6.48 × 107 cells mL-1)respectively.The result showed that maximum lipid contents(223.33,mg L-1)was obtained NaNO3 fallowed by CO(NH2)2 and NH4Cl(135 and 110 mg L-1)respectively.Total lipids on dry cell weight basis(27.61)was obtained by NaNO3,in the culture grown under low nitrogen concentration fallowed by urea and NH4Cl(21.43 and 14.46%).Whereas increase in N concentration up to certain level significantly increase in biomass production in all tested sources and the maximum biomass(1081.70 mg L-1)was obtained at 0.005 M NaNO3 compare to urea and NH4Cl(785 and 665).Carbohydrates and NL shows similar trend to total lipids.From the above results conclude that this strain could be cultivated for the high biomass production by using NaNO3 as a sole nitrogen source.The physiological factors for microalgae cultivation are the preliminary steps to overcome the potential biomass demand.In this regard,the influence of light intensity,(0,42,84,127 and 170 μmol m-2 s-1)on the growth and biochemical composition of Dunaliella salina was matched in batch culture up to 21 d.The maximum cell growth 11.78×107 cell mL-1 and total lipids on dry cell weight basis(30%)were recorded at 127 μmol m-2 s-1,at stationary phase of the experiment,The maximum fluorescence intensity,261.5×107 cells mL-1,was recorded at T4 on(127μmol m-2 s-1)while,minimun at low level,T1107 cells mL-1,was recorded at T4 on(127 μmol m-2 s-1 while,minimum at low level,T172.175 × 107 cells.Further increased in fluorescence adversely effect on growth and lipids 72.175×107 ells.Furtner increased in fluorescence adversely effect on growth and lipids assembly of tested strain of Dunaliella salina.Photosynthesis pigments,chl a,chl b and carotenoids gradually increased with increase in time and light intensity as showed in(Figure 5.2 a,b and c).The maximum beta-carotene production 4.050 mgL-1 were recorded at high light(170 μmol m-2 s-1)as compare to no light 1.170 mgL-1,Figure.5.2 c.Chlorophyll a and b has alike trend to carotenoids figure 5.2 a and b.carbohydrates were maximum at high light intensity at the time when Dunaliella salina cells entered to stationary phase of the growth figure 5.3 a and b.Development of lipid assembly is essential to improve the commercial feasibility of microalgal biodiesel production.An oleaginous microalgal strain,Dunaliella salina SA 134 was estimated for its potential as a biodiesel feed stock in this study.The combined effect of organic and in organic nutrient(NaHCO3,CH3COONa and C3H8O3)stresses on the lipid and other biochemical compounds productivity of the selected strain was studied.Maximum growth rate 8.26 × 107 cells mL-1 was observed by using glycerol with(0.01M)concentration fallowed by sodium bicarbonate,(0.1M)and sodium acetate(0.01M)7.41 ×107,6.13 × 107 cells mL-1 respectively.The highest lipid content of 826.67 mgL-1 and lipid productivity on dry cell weight basis 27.729%was obtained under nutrient stress with organic carbon source up to a specific concentration similar trend was observed in photo synthetic pigments.Results of carbohydrates stated that the extracellular carbohydrates production of Dunaliella salina relied on carbon sources as well as concentration and it was maximum(457.36 mg L-1)by using the glycerol as a sole carbon source as compare to sodium bicarbonate and sodium acetate(311.09 and 289.07 mg L-1)respectively.Neutral lipids assembly by Nile red fluorescennce 603.51 × 107 cells,was respectively.Neutral lipids assembly by Nile red fluorescence 603.51 ×107 cells,was recorded by using the organic carbon at very initial concentration at the end of the experiment fallowed by 541.12 × 107,425.91 ×107 cells mL-1,sodium acetate and sodium bicarbonate.Meanwhile,further increment of nutrients showed almost the negative trend on overall tested parameters.
其他文献
抗体是由脊椎动物产生的一种能高亲和力、特异性识别抗原的多功能分子。在植物保护领域,抗体即可作为农药残留免疫分析的生物识别分子,又可用于农药的分子模拟,替代其与靶标昆虫受体结合,甚至引发生物学效应。本研究从抗体的生物识别和分子模拟两大功能着手,开展了多种拟除虫菊酯农药共性代谢产物3-苯氧基苯甲酸(3-PBA)免疫分析技术研究。同时采用抗独特型抗体技术对苏云金芽孢杆菌(Bt)Cry2Aa毒素进行分子模
现代农业生产中,大量施用化肥以达到作物高产的施肥方式不仅引起了一系列的环境问题还导致了耕地质量的下降。为了维持农业可持续性发展,通过养分优化管理减少投入、提高效率和土壤的可持续性生产能力已成为农业生产的迫切需求。养分优化管理在使作物达到高产和高效的同时,也会对土壤微生物产生直接或间接的影响。土壤微生物在驱动土壤养分循环、作物养分供应及土壤培肥的过程中发挥了决定性的作用,了解作物高产高效下的微生物群
植物进化出了细胞表面的免疫受体蛋白(Pattern recognition receptor,PRR)和胞内免疫受体蛋白(Nucleotide-binding leucine-rich repeat receptor,NLR)来识别病原效应因子并进而启动先天免疫系统来抵御病原物的侵染。NLR类受体蛋白作为最大的一类抗性蛋白,其结构主要包括N端结构域、核酸结合结构域(Nucleotide-bindi
解淀粉芽孢杆菌SQR9(Bacillus amyloliquefaciens SQR9,SQR9)是一株从健康黄瓜根际筛选到的植物根际促生菌,被用于防治由尖孢镰刀菌所引起的黄瓜枯萎病。SQR9的处理可显著地促进植物生长,协助植物抵抗盐胁迫,并对多种土传病害存在抗性。对SQR9生防功能的研究集中于根际竞争性定殖与产生抗生素等直接抑制病原菌的机制。并且植物根际促生菌(Plant growth-prom
在耕地资源紧缺的形势下,通过施用化肥提高作物单产,是减缓粮食需求压力、保障粮食安全的重要途径。然而,农户为了达到作物高产目的而过量施用化肥,导致了当前高投入、低效率以及高环境代价的粮食生产现状。因此,探索优化施肥下作物稳产增效的潜力与土壤的微生物学特征,进而构建土壤-微生物-作物三位一体的养分优化管理模式,是实现农业高产高效可持续生产的迫切需求。本研究通过农户调研结合文献整合分析,同时进行三年的田
土壤盐渍化是一个全球性问题,对生态环境和农业生产带来了巨大的负面影响。盐胁迫导致植物生长发育迟缓,由此引发多种生理反应。植物形成各种生理、细胞和遗传机制使其在高盐胁迫下得以生存,其中包括SOS(Salt overly sensitive)系统、植物激素、抗氧化防护系统、渗透调节物质和膜脂信号等。植物磷脂酶D(Phospholipase D,PLD)是磷脂代谢和应答非生物胁迫的重要酶类。PLD及其水
植物为了适应土壤中不同且变化的营养状况而长期进化产生出灵活和复杂的调控机制。由于土壤环境中矿质营养使用效率直接影响作物的产量和品质,因此对植物矿质元素吸收、转运、分配和利用的稳态分子调控机制需要从多角度深度解析。目前研究主要以转录因子为中心的转录调控为主,而对可变剪接介导的转录后水平调控的功能基因组研究比较欠缺,甚至被低估。可变剪接不仅丰富了蛋白质多样性,而且可以通过转录后调控机制调控基因表达,从
褐飞虱(Nilaparvata lugens Stal)是危害水稻的主要害虫之一,在亚洲稻区频繁爆发。除了直接刺吸植物茎秆汲取营养、产卵为害外,褐飞虱导致的水稻病毒传播更造成了进一步为害。长期以来,很多种类的杀虫剂被用于防治褐飞虱,包括有机磷类、氨基甲酸酯类、苯吡唑类、噻嗪酮、吡蚜酮和新烟碱类杀虫剂。然而,褐飞虱对众多杀虫剂产生了一定水平抗性,使得化学防治效果受到严重威胁。醚菊酯是一种非酯键的拟除
3-氨基-1,4-二甲基-5H-吡啶并[4,3-b]吲哚(中文简称色氨酸-P-1,英文简称Tryptophan-P-1),是一种广泛存在于肉制品中的杂环芳胺类化合物,被国际癌症研究机构(IARC)认定为2B类致癌物,具有很强的致癌性和致突变性。色氨酸-P-1的减控对于肉制品的安全性极为重要。现有的色氨酸-P-1减控的方法主要包括:控制烹调时间/温度、加入其他物质减少色氨酸-P-1生成,使用色氨酸-
根际的有效定殖是植物根际促生菌(Plant growth-promoting bacteria,PGPR)发挥促生和拮抗功能的前提,而生物被膜形成能力的强弱是根际定殖的关键。芽孢杆菌生物被膜的形成受多种环境因素诱导。已知环境缺氧信号可刺激芽孢杆菌生物被膜形成,但具体的信号识别和调控机制并不清楚。解淀粉芽孢杆菌(Bacillus amyloliquefaciens)SQR9是本实验室从黄瓜种植发病区