基于Hololens2的机翼装配过程研究与实现

来源 :沈阳理工大学 | 被引量 : 0次 | 上传用户:pldpl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的装配辅助系统都是基于两个方向——虚拟装配辅助系统和PC端的装配辅助系统。虚拟装配辅助系统只能作为前期培训使用,并不能将装配过程与其结合,所以该技术有着较大的局限性。而基于PC端的装配辅助系统虽然也可以在装配过程中查看各种必要的信息,但是这也意味着用户必须停下手中的工序去操作电脑,这大大降低了整体的效率,同时其也存在着不够形象、晦涩难懂的缺点。本文针对以上两种装配辅助技术存在的不足和未来传统制造行业向智能化转型这一必然的趋势,将基于混合现实技术的智能可穿戴系统与机翼装配过程相结合,并通过对比市面主流的MR(Mixed Reality)设备,选择了由微软公司最新发售的MR全息眼镜Holo Lens2作为机翼装配过程研究的硬件平台。最后开发了基于Hololens2全息眼镜的智能可穿戴系统。该系统主要利用混合现实技术可以将虚拟的三维模型显示到真实的空间中,即让虚拟的对象在真实的空间环境中显示,同时可以通过手势和语音等丰富的交互方式与虚拟的三维模型进行交互,也可以在装配的过程中播放特定工位的装配演示动画以及利用虚拟信息提示面板提供必要的装配工艺参数和工艺路径。基于以上分析,本文主要研究内容及成果如下:首先概括描述了工业应用中虚拟现实技和增强现实技术与混合现实技术的异同,详细分析了混合现实技术中的四大核心技术,并依此建立了智能可穿戴系统的总体技术框架。然后介绍了三维机翼模型的创建和导入,并利用减面优化技术对机翼模型进行了必要的简化,其次介绍了三维开发引擎,并选择Unity3D作为智能可穿戴系统的二次开发平台,详细分析了场景的必要配置和相应的性能优化方法及实现人机交互的碰撞检测算法和包围盒的选择,并对不同情况下的碰撞检测算法进行了研究和对比。最后对系统的需求进行了详细分析,通过需求分析确定了智能可穿戴系统的整体开发流程及相应的功能模块,并将各个功能模块在Unity3D中进行实现,在测试其功能完善后,将其部署至Hololens2全息眼镜中供装配人员使用。
其他文献
随着计算机图像处理、5G移动通信等技术的不断发展,模拟训练系统被应用到越来越多领域。通过在模拟训练系统中对现实复杂交通现象进行仿真,能够排除空间、时间、天气等诸多限制因素的影响,提供可持续的训练与研究,具有一定的研究意义与应用价值。本文基于模块化的思想,分析运动车辆精确定位模拟训练的需求,将系统整体结构进行了实现,主要研究内容包括:(1)阐述了多种无线定位方式,并按照基站铺设、定位误差、适用程度三
学位
一直以来,由于我国边境条件复杂,单一传感器的识别效果有限,且非常容易受到气候、能见度、人为伪装等多种因素的影响,导致识别效果不佳。本文主要研究了一种在复杂背景下将不同类别的传感器组合成簇的方法,能够协同、动态的对入侵目标进行跟踪识别。多传感器协同探测不仅增加了信息的互补,提高了识别准确率,还提高了系统的鲁棒性,实现了对目标的全方位识别探测。本文主要研究内容如下。(1)在复杂环境的复杂背景下,对通信
学位
在组织病理学图像分析中,细胞核的分割对癌症的临床分析诊断有着重要的作用,将细胞核精确的分割出来可以为肿瘤分级奠定良好的基础。但是由于细胞存在不同的形态,染色的不均匀以及大量密集的核团的存在,精确的分割出细胞核仍具有挑战。近年来,深度学习已经广泛的被应用到病理图像细胞核分割中,因为它能够自动在图像数据中获取重要信息。为了更好的使深度学习神经网络在训练过程中能学习到更多具体的关键的特征信息,本文对国内
学位
随着现代化的逐步推进,计算机、图形图像、硬件交互等技术已经成了生活学习中不可或缺的关键部分。虚拟现实技术作为一种新型的计算机技术,因其沉浸式和交互式等特性,正在潜移默化的改变我们的日常生活,也在各行各业产生了深远影响。在工业装配领域,传统装配方式需要消耗大量空间成本、时间成本、人力成本等,但是把虚拟现实技术与工业装配相结合,可以将真实的装配过程转变为在虚拟环境下的装配,解决传统装配技术带来的各个方
学位
学位
人体动作识别作为计算机视觉领域的关键技术之一,对现代社会的发展进步起到至关重要的作用。如何在不受复杂环境和目标个体差异的影响下提高机器识别人体动作的准确度,并使其快速准确的理解人所表达的动作信息是目前各大领域研究者们关注的重点。由微软发布的Kinect设备可采集三种不同类别的数据,其中深度数据和骨骼数据只取决于目标的空间位置,具有颜色无关性,动作识别受外界因素的干扰较小,为人体动作识别技术的研究提
学位
随着科技的不断进步,相关电子元器件的制造产业取得了高速发展,自动检测电子元器件产品质量也成为了电子元器件生产的现实需要。在自动检测领域中,“检测精度”与“检测速度”是两个十分重要的检测的指标。本文根据工业生产环境中对检测精度和速度的不同需求,提出以下两种需求目标:(一)允许少量精度损失的情况下以高速度为目标;(二)以较高精度的电子元器件表面缺陷检测为目标。针对这两种需求目标,本文分别设计了两种基于
学位
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号
学位
随着计算机视觉技术飞速提升再加之社会各界大力发展,基于深度学习的行人检测与跟踪技术愈来愈受到国内外专家的科研重视,各国科研所与科技公司都对此展开了着力研究。人们对于安全与隐私意识也愈发提高,对于室内监控则变得越来越重视并在教学楼,火车站,候机楼等各种场合都有着视频进行记录,用监控学生或员工的安全问题;同时也可以在室内某些恶劣情况发生时检测人们的轨迹检测并记录下来,及时发现情况将人身和经济损失降低;
学位
随着当今社会人工智能的迅速发展,各行业对无线定位技术的需求不断增加。目前飞机机翼的装配复杂,尺寸较大,在实际的装配过程中定位难、在装配时需要大量工人协作装配,工人仅根据经验或纸张看板装配,会出现错装、漏装等情况。为了满足工人对装配资源的定位以及装配信息可视化的需求,采用基于RFID技术和UWB(超宽带)技术的复合定位方案实现状态信息的获取,以建立实时更新的、现场感强的“真实”飞机机翼模型,利用真实
学位