论文部分内容阅读
软计算技术是包含模糊逻辑(fuzzy logic)、神经计算(neuro-computing)、进化计算(Evolutionary computing)和概率计算(Probabilistic computing)等基本成员的计算方法论的集合,它是求解高度非线性复杂系统的有效工具。模糊神经网络(Fuzzy Neural Network, FNN)是软计算技术的主要研究内容之一,是智能控制理论中的一个十分活跃的分支,是由人工神经网络与模糊逻辑系统的有机结合而产生的一种混合智能系统。模糊神经网络是一种能处理抽象信息的网络结构,它具有强大的自学习和自调整功能。因此,模糊神经网络的相关研究对软计算技术和智能控制发展具有非常重要的意义。本文在分析模糊神经网络理论和应用现状的基础上,系统研究了单体FNN和折线FNN这两类FNN模型的性能和学习算法,并将所得成果应用于模糊控制领域,其中主要包括单体FNN训练模式对的摄动问题和折线FNN的逼近性能,并为折线FNN设计了两种模糊学习算法,这些工作为FNN乃至软计算技术的实际应用奠定必要的理论基础。本文所做的主要工作和研究成果如下:(1)对模糊神经网络的训练模式对的摄动问题进行了研究。首先给出了一般模糊神经网络的训练模式对摄动的鲁棒性定义,然后具体以单体模糊神经网络为例,进行了系统分析,理论研究表明当训练模式对发生最大γ保序摄动时,在h=5的条件下,单体模糊神经网络对训练模式对的摄动全局拥有好的鲁棒性。(2)对折线模糊神经网络的泛逼近性进行了深入研究。首先限制折线FNN输入或权值的范围,对两种特殊的折线FNNs的泛逼近性进行了系统分析,然后进一步分析了一般意义上的折线FNN的泛逼近性,此处的一般折线FNN是指对网络输入和权阈值没有其他限制。理论研究表明,上述三种折线FNNs均能作为模糊连续函数的通用逼近器,并且证明了:递增性是折线模糊函数保证折线FNN泛逼近性成立的等价条件,从而解决了折线FNN的泛逼近性问题。(3)为折线模糊神经网络提出了两种模糊梯度学习算法。首先系统研究了Λ—(?)函数导数的基本性质,然后针对折线FNN设计了基于遗传算法或量子遗传算法的两种模糊共扼梯度(CG)算法,在算法迭代的每一步,利用遗传算法或量子遗传算法(GA)来确定最优学习常数,从理论上证明了该模糊共扼梯度算法的收敛性,用于实际模糊控制领域中的实例验证了上述学习过程。