论文部分内容阅读
近年来,随着全球电子商务产业迅猛发展,产业规模不断扩大,电子商务在国民经济中占据着越来越重要的地位。然而,许多不良商家受商业利益的驱使,利用电子商务平台信息不对称和信誉体系发展滞后的弱点,使用多种手段破坏信誉系统,误导消费者和电商平台,给电子商务产业的健康发展造成了不良影响。针对电子商务平台信誉系统脆弱和虚假评分屡禁不止的问题,本文从买家(评分者)的评分行为入手,在买家分类方法、电子商务平台信誉评估和买家虚假评分检测等方面展开研究。主要完成了以下几个方面的工作:1.基于印象理论对买家的评分行为进行了建模,给出了宽松型和严苛型买家的定义,并依据买家的行为特征设计了基于最近邻搜索的买家筛选方法。该方法改进了最近邻搜索算法,无须在剩余买家的聚类上花费额外的聚类时间,提高了分类的速度。实验结果表明,本文的分类方法优于传统的分类方法。2.提出了基于买家行为的无监督卖家信誉评估方法(Impression-Based Strategy,IBS)。首先,依据严苛型和宽松型买家的行为特征,提出了卖家是否诚信的评判规则。其次,运用卖家属性评判规则,预分类出一部分诚实和不诚实的卖家;以这部分卖家作为基准,把买家再分成诚实的、不诚实的和不确定的三类。最后,加权聚合诚实和不确定买家群组对卖家的评分,对卖家信誉进行评估。在模拟数据集和Yelp数据集上的实验表明,IBS方法不仅能准确估计卖家的信誉,而且能够防御各种常见的和未知的信誉攻击。即使在不诚实的买家比例很高的极端环境下,IBS也能有效地工作。3.基于深度学习理论,提出了一种半监督的买家虚假评分检测算法。该算法用马尔可夫决策过程来建模买家的评分序列,根据买家的评分特征设计了一个深度Q网络,用于学习买家的评分行为。为了能够更快地感知环境的变化,在深度Q网络中引入了 IBS的卖家信誉评估方法。基于真实数据的实验表明,这种融合卖家信誉评估方法的深度Q网络经过大约2万样本的训练学习后,可以作为一个过滤器来检测同一平台中其它评分的真伪。4.设计并实现了一个基于多Agent系统的电子商务信誉仿真平台。平台考虑了信誉和价格因素,交易和选择策略,市场中各参与方的行为模式等。研究者可以加载自己的分布式或集中式的信誉模型,以方便各信誉模型之间进行比较。