氟硼二吡咯有机高分子纳米材料用于肿瘤光热治疗研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:wanjjsaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光热治疗是一种新型的癌症治疗手段,因具有非侵入性、副作用小等优点而被广泛关注。光热治疗通过光热材料在光照条件下产生局部过热来实现肿瘤细胞的消融。因此,光热材料的性能在光热治疗的过程中尤为重要。氟硼二吡咯(BODIPY)是一种摩尔消光系数高、光稳定性好且易修饰的染料分子,广泛用于癌症治疗的研究。通过合理的分子结构设计可以调节分子的吸收和发射波长以及光热转换性能等。有机高分子纳米材料的构建在解决药物疏水性问题的同时可以提高药物在体内的稳定性和血液循环时间,有利于其在肿瘤的聚集。目前,物理包封和化学键合是制备有机高分子纳米材料的主要方法。基于此,本论文选用BODIPY分子作为研究对象,通过分子结构的设计构建具有高光热性能的材料,并结合其他疗法,进一步提高BODIPY在肿瘤治疗中的效果。具体的研究内容如下:(1)为了探究共轭结构对有机分子性能的影响,我们合成了三种具有不同共轭结构的BODIPY分子。研究发现,随着共轭结构的增大,BODIPY分子的吸收和发射波长发生红移,系间窜越增强,辐射跃迁减弱。在组装成纳米材料后,聚集效应导致的荧光淬灭和系间窜越的抑制,促进了非辐射跃迁产热过程的发生。因此,具有最大共轭结构的BODIPY与嵌段共聚物F127共组装得到的有机高分子纳米材料因具有更高的光热性能在体内的肿瘤治疗中效果优异。(2)为了探究分子结构对有机分子的性能影响,我们在BODIPY的meso位引入苯环、萘环、蒽环和芘环。实验表明,具有不同取代基的BODIPY的吸收光谱、发射光谱以及与嵌段共聚物F127共组装得到的有机高分子纳米材料的光热性能均差别不大。但是由于蒽基团诱导的自旋轨道电荷转移-系间窜越促进分子在相同条件下产生更多的单线态氧。在体外实验中,这种光热和光动力的联合治疗表现出更高的疗效。(3)为了提高肿瘤治疗的效果,我们合成了一种同时具有铜螯合和光热作用的BODIPY分子,与二硬脂酰基磷脂酰乙醇胺-聚乙二醇共组装得到的有机高分子纳米材料可以与铜离子螯合,并导致荧光淬灭。在光照条件下,纳米材料表现出良好的光热作用。在体内的抗肿瘤实验中,与单独的铜螯合或光热疗法相比,两种疗法的联合表现出增强的抗肿瘤作用。(4)为了改善聚合物物理包封的担载效率,我们将亲水性的聚乙二醇与近红外BODIPY键合,得到的聚合物基BODIPY分子可以在水中自组装成有机高分子纳米材料。通过引入重原子,实现光热和光动力治疗的联合,显著提高了纳米材料的抗肿瘤性能。此外,这种纳米材料能够对小鼠进行肿瘤的光声成像和近红外成像,实现了光敏材料的诊疗一体化。
其他文献
脑图谱依照细胞类型、解剖结构和功能相似性等将人脑划分成不同的子区,是大脑作为高级智能系统的重要体现。脑图谱的精准构建不仅是认识和理解大脑的重要途径,亦是脑部相关疾病机理研究、疾病诊断和临床治疗的迫切需求,并引导和推动类脑智能技术的发展。基于静息态功能磁共振成像(resting-state functional Magnetic Resonance Imaging,rs-fMRI)的脑区划分技术可以
学位
目前,高效有机太阳能电池器件的活性层主要由窄带隙的非富勒烯受体与宽带隙的聚合物给体搭配而成,发展新型窄带隙非富勒烯受体和宽带隙聚合物给体材料是促进有机光伏电池发展的重要手段。本论文围绕有机太阳能电池活性层材料的设计,进行窄带隙非富勒烯受体和宽带隙聚合物给体两个方面的合成与性能研究工作。在窄带隙非富勒烯受体方面,通过对构建单元的选择与设计,分别采用引入π桥和端基修饰,对星型和线型两种不同结构特征的受
学位
三聚吲哚是将三个经典电子给体咔唑单元通过共用一个苯环稠并形成的多环芳烃结构单元,它具有比咔唑更强的给电子能力,更大的π共轭平面结构。同时,三聚吲哚还具有较宽的光学带隙,良好的空穴迁移率以及与PEDOT:PSS接近的最高占据分子轨道(HOMO)能级。这些特点使得三聚吲哚不仅可以作为电子给体单元构建热活化延迟荧光(TADF)材料,而且可以用于构建电致发光器件的主体材料。然而,目前报道的三聚吲哚类TAD
学位
近年来各种病毒频频爆发,例如2002年爆发的严重急性呼吸综合征冠状病毒(SARS-CoV),2009年爆发的甲型H1N1流感病毒,2012年爆发的中东呼吸综合征冠状病毒(MERS-CoV),2019年爆发的严重急性呼吸综合征冠状病毒2(SARS-CoV-2),这些病毒都具有较强的传染性和致病性,快速、准确、灵敏的病毒检测可极大地减少其对人类社会的危害。除此之外,癌症也是影响人类健康的重大疾病之一。
学位
初中时期,学生逐步系统性接触物理知识,并且开始接触物理实验.在物理知识的学习中,实验发挥着重要作用,因此,提高学生的实验素养有利于促进学生对物理知识的获取.然而,在初中物理实验教学中,因各种原因导致实际教学中存在着教师观念落后、教学模式单一、教学资源匮乏及缺乏实验探究等多种问题.本文结合实际,提出转变传统观念、联系生活实际、设定拓展问题、自主设计实验、巧用信息技术等多种策略,为物理实验教学提供参考
期刊
针对不同倾向、不同倾角条件下,边坡变形破坏特征不同但缺乏相互对比分析研究的现状,在充分考虑硬岩岩质边坡变形破坏特征的基础上,配制硬岩相似材料,采用底摩擦试验方法,分析不同倾向、不同倾角边坡变形破坏模式,并借助PIVlab技术进行分析。结果表明:顺倾和反倾边坡变形破坏模式和破坏范围有明显区别。在45°坡度条件下,当顺倾边坡倾角由30°→45°→60°→80°转换时,变形破坏模式由滑移-拉裂→轻微滑移
期刊
细胞膜将细胞的内部与外部分开,并通过其跨膜蛋白执行基本功能。细胞通过膜上蛋白,脂质和糖类等生物分子的相互作用维持了细胞内环境的稳定,为细胞的各种生理活动,例如增殖与分化,胞吞与胞吐等提供了保障。然而,由于细胞膜的组成成分的复杂性和结构的高度组织化,使得我们无法充分描绘原位环境中细胞膜的结构和功能。了解原生细胞膜的组成和结构对于膜靶向药物筛选和用于药物/疫苗输送的工程纳米颗粒的制备是至关重要的。近些
学位
合成高分子材料是现代人类文明不可或缺的材料体系。但是,目前大多数高分子材料以石化资源为原料,且在自然条件下难以降解,在全球范围内造成严重的环境后果。因此,以可再生资源为原料,通过发展新的合成方法将廉价、可再生的单体高效高选择性的转化为可持续高分子,不仅可以大幅降低合成高分子工业对石油的依赖程度,还能获得具有丰富功能侧基的聚氨基酸、聚酯、聚碳酸酯等功能高分子材料,已经成为当今世界上高分子合成化学的前
学位
近三十多年以来,增材制造技术在航空航天、医疗、能源、汽车等领域快速发展,对作为重要原材料的金属粉体特性,包括粒径尺寸及分布、微观结构和粉体形貌等,提出了更高的要求,特别是对于大尺寸非晶合金构件的制造提供了新的思路。因此,制备粒径细小、尺寸分布窄、非晶含量高、球形度良好的金属粉体,对于增材制造(尤其是选区激光熔覆(SLM))制备大尺寸非晶合金构件的结构和性能有至关重要的影响。作为制备非晶合金粉体的重
学位
党的二十大报告中指出“高质量发展是全面建设社会主义现代化国家的首要任务”,而实现高质量发展需要高质量金融,这也是中国经济社会发展赋予中国金融的历史责任与必然要求。与此同时,目前中国正处于经济转型的关键时期,我们要把扩大内需战略同深化供给侧结构性改革有机结合起来,推动经济实现质的有效提升和量的合理增长。中国作为世界上最具活力的经济体之一,国内企业众多,如何促进企业的良好健康发展、企业价值的稳步提升,
学位