【摘 要】
:
含氮杂化作为一类重要的化学骨架,在天然产物、药物化学和有机合成化学等领域被广泛开发和使用。正是因为该类杂环在各领域举足轻重的地位,因此数年来对其功能化的探究历久弥新。而在复杂分子的背景下,对其进行直接修饰并非易事,大多数通过分子内环化等策略。另一方面,近年来实现对含氮杂环化合物的直接修饰的方法,多数离不开贵金属的催化。因此探索温和、环境友好的简便方法实现对杂环化合物分子后期的直接修饰就显得尤为重要
论文部分内容阅读
含氮杂化作为一类重要的化学骨架,在天然产物、药物化学和有机合成化学等领域被广泛开发和使用。正是因为该类杂环在各领域举足轻重的地位,因此数年来对其功能化的探究历久弥新。而在复杂分子的背景下,对其进行直接修饰并非易事,大多数通过分子内环化等策略。另一方面,近年来实现对含氮杂环化合物的直接修饰的方法,多数离不开贵金属的催化。因此探索温和、环境友好的简便方法实现对杂环化合物分子后期的直接修饰就显得尤为重要。而烷基化的研究作为功能化课题中一个重要的分支,自然是备受瞩目。有关烷基化的报道并不少见,但是含氮杂环的烷基化仍旧需要进一步探索出更加绿色环保,操作简单的方法。因此,基于以上原因,本论文探究了含氮杂环化合物烷基化的新方法。本论文主要包含以下三个方面:第一部分:归纳总结几种常见的烷基源以及对喹喔啉酮和2H-吲唑环上功能化进行简单的回顾和综述。第二部分:采用醛做烷基源在过氧化物催化下对喹喔啉酮C-3位烷基化研究,我们对反应条件进行了筛选,反应底物进行了拓展,同时也对反应机理进行了研究和验证。该方法简单高效,为含氮杂环的烷基化提供新的路径。第三部分:在实现对喹喔啉酮的烷基化后,考虑到2H-吲唑作为极具前景的含氮杂环,并且作为药物前提被广泛的研究开发应用。我们希望也能通过简单的方法实现对2H-吲唑的烷基化。该反应也是通过醛做烷基源,在对反应条件筛选、底物进行拓展后也进行机理验证。条件简单,操作便捷,环境友好,无金属催化,是该反应区别现有相关2H-吲唑烷基化的其他方法的地方。总而言之。我们开发了一种更加绿色高效,无金属催化,并且适用范围广的针对含氮杂环化合物烷基化的方法。从有机合成的角度,我们提供了一种烷基化新思路,为将来更好实现更加高效环保的新方法提供了参考。
其他文献
手性药物和农药具有高活性,在医疗和农业生产中发挥着重要作用。通常仅一种对映体具有较高的药理活性,其余的对映体不仅活性低,甚至对人体有害。所以需要制备高纯度的对映体,并严格监测和控制有害对映体的含量。目前,高液相色谱(HPLC)结合多种手性固定相(CSPs)已发展成为对映异构体分离和分析的首选方法之一,其中手性分离材料的性能是决定对映体拆分成败的关键。为此,本学位论文的研究内容主要是制备、表征、评价
联烯类化合物是有机合成中用途独特的中间体,因为它们的结构和反应性质在许多情况下补充了烯烃和炔烃的化学性质,在许多天然产物以及医药相关化合物中也发现了联烯结构。氟的强吸电子的特性和相对较小的原子半径使其具有特殊的物理化学性质性。当将各种类型的氟化部分引入不同的有机化合物时,通常表现出截然不同的反应性,这增加了对含氟基团的实用合成方法的需求。鉴于联烯化合物的广泛应用,手性含氟联烯化合物未来将在药物发现
含氧杂环化合物是天然化合物中普遍存在的结构单元。一直以来,含氧杂环化合物的合成因其多样的生理和生物活性而受到广泛关注。尽管已经报道了许多含氧杂环合成方法,但开发出更高效、简便的合成方法仍然是广大研究工作者孜孜以求的奋斗目标。联烯作为一类活性很高的分子,有着多样的反应位点和可调控性能,因此基于联烯的反应类型十分丰富,如亲电加成、亲核加成、环加成反应等。联烯参与的环加成反应,根据参加反应的位点的不同,
近几十年来,有机太阳能电池受体材料的研究受到人们广泛关注。酞菁及萘酞菁类分子具有易于配位的空穴,其四周具有多个活性位点,易于修饰,光热稳定性也很好。目前,以轴向取代的酞菁及萘酞菁衍生物作为有机太阳能电池受体材料的报道大都为平面结构,本论文以具有立体结构的三维酞菁作为研究对象,合成了一系列酰亚胺取代的三明治型双层酞菁及萘酞菁稀土金属配合物,酰亚胺取代基的强吸电子性使得分子的谱学性质和能级都有了较大的
芳胺是一类重要的有机化合物,其骨架广泛存在于各类药物、农药、染料和有机材料分子中。近年来,芳胺的碳氮键活化转化反应成为有机合成化学的热点研究课题。伯芳胺的碳氮键活化转化主要是通过预先活化策略将伯芳胺转化为活性的重氮盐、季铵盐、吡啶盐和(磺)酰胺化合物参与反应。由于具有高化学键解离能,叔(仲)芳胺的碳氮键活化转化报道很少,主要集中于过渡金属催化含邻位导向基芳胺与镍催化联苯胺或萘胺的碳氮键活化转化反应
有机体相异质结太阳能电池作为有应用前景的新一代光伏技术,被科研工作者广泛研究。在有机体相异质结太阳能电池中,活性层是重要组成部分,活性层由电子给体材料和电子受体材料组成。相比于丰富的给体材料,优秀的受体材料稀缺。本研究设计、合成了一系列电子受体材料,并探究了它们的基本性质和光伏应用。(1)利用分子内的O---S、S---F、F---H及O---H非共价键相互作用和氢键作用原理,通过Stille偶联
在改革开放的年代里,工业发展取得的成功有目共睹;然而经济成功却是以牺牲环境为代价。在各种工业废水排放中,印染废水的水量巨大、程度极高,处理起来非常棘手,影响国家高质量发展战略。为了解决水资源短缺和水污染的紧急状况,找到可以治理水环境的有效方法迫在眉睫。吸附法是污水处理中经典的方法之一,可以有效处理水中的污染物从而实现再生利用。在本研究工作中,我们利用Diels-Alder反应和多组分反应结合,成功
随着染料工业的高速发展,染料废水的肆意排放对水生态系统中所造成的环境污染问题益发严峻;发展简单、高效的污染物去除技术对于生态环境保护以及经济社会发展具有重要意义。在众多环境处理技术中,吸附法因其廉价、高效和操作简便成为污染物控制的主要技术之一。碳材料是一类重要的功能材料亦被广泛应用于水环境污染处理研究,发展基于碳材料的高效吸附剂已成为水污染处理的一个重要研究方向;然而未经修饰的碳材料水分散性较差、
硫酰氟(SO2F2)是一种无色无味,在干燥环境和400℃以下可以稳定存在的气体,作为熏蒸剂已有50多年的历史。自2014年Sharpless教授发表了基于Sulfur(VI)fluroride exchange(Su FEx,六价硫-氟交换)反应的一种新型模式点击化学的研究结果后,硫酰氟作为六价硫-氟交换反应的参与试剂,对其的研究已成为有机化学及相关领域的一个研究热点。基于硫酰氟的点击化学在蛋白质
传统的分子铁电体大多为单极轴分子铁电体,影响其在压电性和铁电性的良好表达,它们的应用潜力受到单轴性质的严重限制,导致在寻找合适的薄膜生长基板和实现高性能薄膜方面存在重大问题。经研究发现,一类由球状结构的小分子组成的化合物极大概率为塑性/多轴分子铁电晶体,表现出各种独特的性质,其中大部分是由组成分子的旋转运动和定向无序引起的,在低温相(包括室温相)中具有铁电性,这不同于传统的分子铁电晶体。根据“准球