【摘 要】
:
目前商用的石墨类锂离子电池负极材料由于其较低的理论容量和较慢的离子扩散速率,难以满足制备高容量锂离子电池的需求。因而迫切需要开发高性能的负极材料以提高锂离子电池整体容量。而一些具有高比容量的负极材料(合金类材料,转化机制类材料等)在锂离子嵌入的过程中往往面临体积膨胀大,电子和离子传导率低等问题,极大地制约了这些新型负极材料在锂离子电池中的应用。构建碳基三维多孔网状结构负极材料是一种新兴的锂离子电池
论文部分内容阅读
目前商用的石墨类锂离子电池负极材料由于其较低的理论容量和较慢的离子扩散速率,难以满足制备高容量锂离子电池的需求。因而迫切需要开发高性能的负极材料以提高锂离子电池整体容量。而一些具有高比容量的负极材料(合金类材料,转化机制类材料等)在锂离子嵌入的过程中往往面临体积膨胀大,电子和离子传导率低等问题,极大地制约了这些新型负极材料在锂离子电池中的应用。构建碳基三维多孔网状结构负极材料是一种新兴的锂离子电池负极材料设计思路,是当下的研究热点之一,其能够有效缩短锂离子扩散距离并提供孔洞空间以缓解体积膨胀,进一步提升锂离子电池负极材料的性能。基于现有碳基三维多孔网状结构的设计,本文制备了具有缺陷的二硫化钼/碳三维多孔网状结构,石墨烯/碳纳米管/硅三维多孔网状结构,石墨烯/氧化硅三维多孔网状结构并将其应用于锂离子电池负极材料,具体研究内容如下:1.通过溶剂热的方法制备了二硫化钼/碳的杂化材料,并在氢气条件下煅烧引入硫缺陷,获得了具有丰富缺陷的二硫化钼/碳的杂化材料。一方面,少层二硫化钼纳米片和碳层相互交织构成的三维多孔网状结构有利于微米尺度下的锂离子和电子的传输;另一方面,具有丰富缺陷的二硫化钼可以在原子尺度提供更多的锂离子嵌入位点以提升材料的倍率特性。将该材料用于锂离子电池时表现出较高的可逆比容量(在0.1A/g的电流密度下,循环100次后容量保持有1163m Ah/g)以及良好的倍率性能(在1,2和5A/g的电流密度下,容量分别为942,894和801m Ah/g)。2.将硅与三维多孔石墨烯及碳纳米管复合,通过自组装形成硅/三维多孔石墨烯/碳纳米管三元复合材料。这种设计能够有效提高结构稳定性,使其表现出良好的电化学稳定性。将该材料用于锂离子电池时,在50m A/g的电流密度下充放电比容量稳定在1700m Ah/g左右,相比于硅材料,循环稳定性具有明显的提升。3.从原始的凹凸棒中提取出具有电化学活性的无定型氧化硅,并将其与三维多孔石墨烯复合,自组装形成氧化硅/三维多孔石墨烯复合材料。这种设计有效地提高了该电极材料的循环稳定性。将其初步探索用于锂离子电池时,在100m A/g的电流密度下经过100次充放电循环,容量仍保持在400m Ah/g左右,表明其具有良好的电化学稳定性。
其他文献
聚合物材料具有质轻、耐腐蚀和易加工等特性,在航空航天、能量收集和电子电气等领域具有广阔的应用前景。然而,聚合物材料的本征热导率和电导率极低,限制了其在上述领域的进一步应用。因此,在保障聚合物基体固有特性的前提下,开发具备优异导热/导电性能的聚合物复合材料已成为高能量密度电子器件等高科技领域突破的关键。迄今为止,国内外学者在研究改善聚合物材料导热/导电性能上取得了一定的进展,但现有材料的导热/导电性
高价铁在生物和化学氧化中发挥着至关重要的作用,这触发了研究者们对该类物质反应活性的研究。Fe(Ⅵ)作为铁所能达到的最高价态,通常以高铁酸钾(K2FeO4)的形式存在。K2FeO4是一种具有强反应活性的绿色氧化剂,被广泛应用于水处理、有机合成和高容量电池等领域。最近,越来越多的研究者将K2FeO4应用于材料科学领域,特别是在碳材料的氧化中。然而,目前学术界对于K2FeO4在液相(H2SO4介质)中对
深海赋存着锰结核、富钴结壳、热液硫化物等多种矿藏,其储量庞大,经济前景广阔,因此深海采矿被视作人类未来获取矿产资源的重要途径,发展深海采矿技术具有重要战略意义。近年来,深海采矿发展方兴未艾,包括中国、德国、印度、韩国、日本、加拿大、比利时、欧盟等多个国家和组织正在从事深海采矿技术的研究,已研制多台深海采矿样机并开展了各种阶段的海试。目前深海采矿面临两个主要挑战,即商业开采的经济性问题以及大规模开采
苯胺是一类非常重要且经典的化学砌块,但是其存在多个反应位点,导致对其高区域选择性的官能团化具有挑战性。N,N,-双取代苯胺对位与亲电试剂的反应已经发展非常成熟,但N-单取代苯胺对位与靛红亚胺的不对称傅克反应仍没有被报道。本论文利用手性磷酸作为催化剂,实现了N-单取代苯胺与靛红亚胺的不对称傅克反应,成功制备了一类新型的手性氮杂季碳2-羟吲哚化合物,拓展了氮杂季碳羟吲哚分子库。本论文的主要成果体现在:
汽车工业的蓬勃发展源源不断地滋生出工业垃圾——废旧轮胎,不合理的回收方式不仅造成资源的浪费,还对自然环境和生命安全产生威胁。将轮胎破碎成胶粉用于沥青改性是其循环利用的绿色化和高值化途径,但轮胎橡胶固有的三维交联网络极大地限制了胶粉在沥青中的均匀分散。传统的橡胶解交联手段存在高能耗、有污染等弊端,同时轮胎胶粉中的合成橡胶在解交联过程中极易发生再交联。因此,绿色、高效地实现轮胎橡胶,尤其是合成橡胶组分
粘结单元法(Cohesive Finite Element Method-CFEM)是一种能够有效模拟断裂问题的计算方法。其基本思想是将计算域离散成三角单元,在单元边界插入粘结面(Cohesive interface),三角形单元采用线弹性本构,粘结面单元采用粘结法则(Cohesive law)来描述。裂纹只允许沿粘结面扩展。由于粘结法则中已包含了强度准则和断裂准则,因而采用CFEM进行裂纹模拟时
稠环芳烃的几何和电子结构可以通过多种化学修饰手段进行调控,进而表现出丰富的半导体活性,在有机电子学器件领域展现了广阔的应用前景。其中,通过引入杂原子形成杂稠环芳烃,可有效改善分子的稳定性、光电活性和自组装行为等。基于此,本文从构建嵌有氮硼氮(NBN)片段的锯齿形边缘结构出发,制备了杂稠环芳烃氮硼氮杂二苯并非那烯单溴代衍生物,并通过合理的分子设计进行功能修饰,制备了系列T形氮硼氮杂二苯并非那烯衍生物
低密度聚乙烯LDPE有着结晶度低、软化点低、断裂伸长率较大、透明度高、防水性能好、抗化学腐蚀、耐酸耐碱和电绝缘性能好等优点,且其来源广泛,价格低廉,易于加工成型,因此广泛应用于绝缘电缆、绝热、阻燃等方面。LDPE发泡材料既具有LDPE优点,同时作为发泡材料有着质轻、绝热和吸收冲击能量等优点。当LDPE作为绝缘包装材料使用时,静电会导致材料吸附灰尘、甚至有可能由静电导致起火、爆炸等情况发生,造成安全
随着经济发展,能源短缺成为世界一大难题,海上风电作为一种新型能源倍受各国的重视。目前海上风电基础形式大多采用单桩基础,由于海水的冲刷作用,影响结构的动力特性和受力性能,甚至造成结构的倾覆。因此,评估冲刷对海上风电单桩基础的影响十分必要。本文首先通过1g条件下的小比例模型试验研究了冲刷深度、保护装置、砂土密度和桩埋置深度对单桩基础位移、水平承载力、桩身应力以及第一自振频率的影响。随后利用ABAQUS
北京师范大学教育家成长研究中心(以下简称"研究中心")系北京师范大学教育学部(以下简称"教育学部")和北京师范大学出版集团(以下简称"出版集团")共建的非建制科研机构,成立于2007年,旨在为广大校长、教师成为教育家型人才搭建专业发展平台,为教育主管部门提供政策建议,为区域教育及广大中小学高质量发展服务。