论文部分内容阅读
随着能源危机和环境保护形势日趋严峻,光伏发电凭借太阳能清洁、环保、可再生等优点备受各国重视。近年来,在政策的推动下,光伏发电产业得到快速发展,光伏电站容量在电力系统电源中所占比例逐渐增加。但是,由于光伏发电系统发电功率受多种因素影响,其输出具有明显的周期性、波动性和随机性,使得其并网运行后相对于电力系统是一个不可控源,当光伏电站的规模较大时势必将对电网的安全稳定运行造成影响。因此对光伏发电系统的发电功率预测进行研究具有重大的理论和现实意义。本文首先阐述光伏电池的工作原理及光伏发电系统的分类,详细介绍并网光伏发电系统的组成,给出华北电力大学新能源国家重点实验室的光伏发电系统基本结构和相关参数。然后分析光伏发电系统的发电特性,选取辐照强度、环境温度、光板温度、环境相对湿度作为影响光伏发电系统发电功率的主要因素,为建立发电功率预测模型提供理论支撑。人工神经网络作为一种广泛使用的数学工具,在光伏发电功率预测方面应用普遍。本文先后阐述了BP神经网络、小波神经网络、回声状态网络及基于经验模态分解-回声状态网络的基本原理,并建立了4种相应的光伏发电功率预测模型。最后,采用华北电力大学新能源电力系统国家重点实验室的实测数据对4种预测模型分别进行实验验证。预测结果表明所建立的4种预测模型均能较准确的进行预测,其中基于经验模态分解和回声状态网络的组合预测模型,由于结合了两种算法的优点,预测精度更高、稳定性能更好。