【摘 要】
:
二次残量迭代法(QRI)是—种求解二次特征值问题的近似特征值及近似右特征向量的方法.QRI在算法过程中生成—组正交基,同时用这组基及正交投影法将原二次特征值问题投影到—个低
论文部分内容阅读
二次残量迭代法(QRI)是—种求解二次特征值问题的近似特征值及近似右特征向量的方法.QRI在算法过程中生成—组正交基,同时用这组基及正交投影法将原二次特征值问题投影到—个低阶的二次特征值问题求解.通常来说投影后问题的阶数远远小于原问题的阶数.因此,可节省许多的计算量.
本文利用 QRI的思想提出双边的二次残量迭代法(TQRI).用TQRI来求解二次特征值问题的近似特征值及相应的左右近似特征向量(或称为Ritz向量).TQRI生成—组双正交基,分别张成求解左右特征向量的近似子空间,并用斜投影法将原二次特征值问题投影到一个低阶的二次特征值问题来求解.而且在生成这组双正交基的过程中,同时考虑让分别在两个近似子空间中产生的左右近似特征向量具有一定的精确度,我们给出的数值例子也证实了这点.TQRI法的优势主要体现在两个方面.其一,采用斜投影法求得的Ritz值可以更好的逼近真实解;其二,可以直接逼近二次特征值的左特征向量,尤其是对于非对称问题.
本文的结构和内容如下,第—章简要地介绍了二次特征值问题及其解法.第二章介绍了残量反迭代法,并给出其收敛性质.第三章介绍了二次残量迭代法(QRI).第四章介绍了双边二次残量迭代法,在本章的第一节中,说明了本文提出的双边二次残量迭代法的出发点,第二节给出了双边二次残量迭代法,并给出几点算法的说明.最后,我们用数值实验说明我们所提出的二次残量迭代法所具有的优越性.
其他文献
锥齿轮铣齿机是用来加工齿轮的专用设备,广泛应用于汽车、拖拉机、机床和其他机械制造行业的齿轮加工。通过分析德国Niles公司ZFTK500双刀盘锥齿铣齿机的工件加工过程,在此基
本文继续研究了分段Koszul代数.具体地,给出了一些分段Koszul代数的判定准则;作为构造更多分段Koszul代数例子的尝试,讨论了分段Koszul代数的"单点扩张"和"H-Galois分次扩张",其中H是有限维的半单余半单Hopf代数.
加强党的执政能力建设对纪检监察机关提出了新的要求:一方面,纪检监察机关作为党和政府的专门监督机关,必须全面履行《党章》和《行政监察法》赋予的职责,在加强党的执政能力
在物理学、化学、生物学、经济等领域的许多问题,可以用Banach空间中的时变双曲型发展方程来描述,与其相联系的时变双曲型发展系统与一般的算子半群和时变抛物型发展系统有显著
模糊逻辑系统利用模糊集合和模糊推理方法处理难以用数学工具精确描述的不确定信息,对研究复杂非线性系统具有很大的突破。由此形成的模糊控制是研究非线性系统的重要方法。目
齐型空间(X,d,μ)是指集合X上赋予一个拟度量d和一个非负、正则Borel测度μ.并且μ满足双倍性条件,即存在常数c≥1使得对任意的x∈X和r>0, μ(B(x,2r))≤Cμ(B(x,r))<∞,B(x,r)={y∈x
本文主要研究反转系统中具有倾斜翻转和同时具有轨道翻转和倾斜翻转的异宿环分支问题,异维环分支问题,一般动力系统中的同宿风箱结构以及线性和超线性矩阵微分方程的振动性.
摘要 我国建筑产业迅速发展,建筑工程中对于造价的管理和控制存在着很多问题。管理和控制水平不足以满足新形势下的建筑工程需求,要加强对工程造价的控制与管理需要从工程整体流程上进行解决。本文分析了建筑工程造价的控制和管理的现状和意义,对于加强控制和管理提出了相应的措施。 关键词:建筑工程;造价;管理;控制 中图分类号: TU723.3 文献标识码: A 文章编号: 建筑工程的造价包括建筑工
本文主要考虑一维空间中的初值问题pt-p(p)xx+ε2(p(√p)xx/√p)x+(pE)x-0,nt-p(n)xx+ε2(n(√n)xx/√n)x-(nE)x=0,Ex=p-n,(x,t)∈R×(0,+∞), (1)(p,n)(x,0)=(P0,n0)(x),(P0
在人们长期生活实践中,一些意外事件的发生往往会给人们的生命和财产造成严重的影响,比如1998年的洪水泛滥、2004年的非典肆虐、2008年的罕见雪灾以及印尼海啸等,都给人们的