【摘 要】
:
绿色化学一直以来都是科学研究和生产生活追求的主题,是实现资源可持续发展的主流。其中催化转移加氢技术具有环境友好、原子经济性高、产品质量稳定以及工艺操作简便等优点,因此被广泛应用于工业生产和科研工作中。催化加氢反应有两种主要的加氢方式分为分子氢加氢和催化转移加氢两种,传统加氢反应是用氢气作为氢源,而催化转移加氢是利用含氢的多原子分子作为氢源,在反应过程中供氢体中的氢转移给反应底物,与传统加氢反应对比
论文部分内容阅读
绿色化学一直以来都是科学研究和生产生活追求的主题,是实现资源可持续发展的主流。其中催化转移加氢技术具有环境友好、原子经济性高、产品质量稳定以及工艺操作简便等优点,因此被广泛应用于工业生产和科研工作中。催化加氢反应有两种主要的加氢方式分为分子氢加氢和催化转移加氢两种,传统加氢反应是用氢气作为氢源,而催化转移加氢是利用含氢的多原子分子作为氢源,在反应过程中供氢体中的氢转移给反应底物,与传统加氢反应对比,催化转移加氢过程具有安全性高、反应温度低、设备要求低、选择性高的优点。水煤气变换反应作为工业制氢的一个中间步骤,在工业制氢中具有广泛应用。水煤气变换反应可以将等量的CO和H2O转变为CO2和H2,原位产生氢气。借助催化转移加氢方法,水煤气变换反应原位产生的氢气可以作为氢源,直接加氢α,β-不饱和醛合成不饱和醇。本论文具体研究内容有:(1)利用水热法合成二硫化钼系列催化剂,通过XRD、XPS确定其晶体价态,应用于水煤气变换反应。在二硫化钼系列催化剂负载活性金属Au,提高了二硫化钼催化剂的水煤气变换产氢性能,与Au负载在碳化钼催化剂对比水煤气变换反应的性能,1Au@Mo Cx催化剂水煤气变换性能更优良。(2)借助催化转移加氢思想,我们将水煤气变换反应和肉桂醛选择性加氢反应耦合,以水为氢源、低成本一氧化碳为氧受体、Au/Mo C为催化剂进行选择性加氢反应。在150℃条件下,肉桂醛的转化率在90%以上,肉桂醇的选择性接近80%,表现出良好的C=O键加氢选择性。同时,通过X射线衍射、高分辨球差校正电子显微镜和X射线光电子能谱等检测方法对1Au@Mo Cx、6Au@Mo Cx和1Au@βMo2C的体相结构和表面价态进行了表征,证实了1Au@Mo Cx的催化活性中心是Auδ+和αMo C1-x的协同作用,通过漫反射原位红外光谱佐证了肉桂醛的C=O双键在Au/Mo C上的吸附,推测了反应机理。
其他文献
碳纤维是一种由堆叠的结晶石墨层组成的无机高分子材料,具有优异的物理化学性能。在航空航天、国防、体育、电子、环保等领域有着广泛的应用前景。随着人们审美需求的提高和多样化发展,碳纤维材料固有的黑色外观已经无法满足人们的需求,由于碳纤维表面缺乏活性较高的化学反应基团,传统染料对碳纤维着色非常困难,因此将碳纤维着色和结构色这一理论结合起来。目前文献报道的碳纤维着色方法有电泳沉积法、原位聚合法、热重力沉降法
荧光成像技术的发展为医学诊断、生物学研究等领域提供了高灵敏度、高时间及空间分辨率的实时监测工具,如在微观尺度观测亚细胞器结构与功能,又如在宏观尺度监测术中肿瘤边缘精细结构。其中,功能性荧光示踪剂是荧光成像技术中最为关键的信号载体,是实现精准成像的材料基础。随着生物医学研究的深入和荧光成像仪器的发展,人们对疾病发生和发展的认识已达到亚细胞器乃至分子水平,对荧光成像试剂的靶向性能也提出了更高的要求。本
硫醚类化合物是存在于汽油、柴油中的主要含硫化合物,燃烧产生的硫氧化合物污染环境,并且对人体健康造成危害。随着化石能源的大量消耗及环保意识的加强,燃料脱硫及废油的合理化再利用成为研究的热门话题。Baeyer-Villiger反应是一类重要的有机反应,能够有效地将酮氧化为相应的酯或内酯类化合物,并且可以应用于C、S、B、Si等杂原子的氧化反应。本研究选用硫醚类化合物为底物,在低温(15℃左右)条件下,
吲哚骨架是一种重要的结构单元,常见于天然产物、药物和其它合成物中。在众多的吲哚衍生物中,发现含硫杂环的吲哚经常作为具有生物活性的天然产物和药物的结构单元。近年来,围绕结构新颖吲哚含硫杂环化合物的构筑,化学研究人员开展了大量的工作。尽管已经开发了几种合成方法来构筑含硫原子的杂环吲哚化合物,但已知文献中合成硫杂环吲哚化合物的例子相对较少。最近,本课题组发展了一种高效的路易斯碱催化非对映选择性[3+3]
有机三重态光敏剂在三重态-三重态湮灭上转换、光动力治疗以及光催化等领域中展现了独特的优势。如何设计三重态寿命长、可见光区吸收强、结构易于修饰和调控的光敏剂分子,是光化学领域的重要问题之一。含重原子的三重态光敏剂因为具有生物毒性、成本高以及三重态寿命短等缺点。基于自旋轨道电荷转移系间窜跃(SOCT-ISC)机理的无重原子三重态光敏剂分子体系,因分子结构简单易修饰,逐渐成为研究者们关注的重点。三重态光
化工火灾事故时发生,具有较强的破坏力和较大的危险性,扑救难度较大。对复杂的火灾救援事故,传统救援方式已经不能与现代的救援需求相适应,基于此,无人机被引用到救援当中。它是一种具有良好功能的航空摄录设备,不但能够对相关的数据信息进行快速获取,还能对消防人员救援起到良好的辅助作用,促进火灾救援质量和效率的提升,在现代火灾救援当中得到了推广和应用。
轴手性联芳基结构骨架因芳基-芳基键旋转势能较大、不易发生旋转而可以以单一构型稳定存在,在不对称催化中,被广泛应用于手性配体的设计和合成中。而其立体构型稳定性主要取决于旋转轴周围基团的数量和大小,依据基团的不同,又衍生出了一些具体的结构骨架,比较常见的有:手性联萘骨架、手性螺环骨架、手性二茂铁骨架。而具有轴手性的双膦配体已成为近些年研究的热点,对于不对称催化反应的发展起着至关重要的作用。但部分轴手性
环金属铂(Ⅱ)配合物具有丰富的发光性质和独特的平面四边形构型,使其在聚集诱导发光(Aggregation-induced emission,AIE)和自组装等领域具有重要的研究价值。目前,见诸报道的AIE材料多为有机小分子,含2,2’-联吡啶配体的阳离子型环金属铂(Ⅱ)配合物的AIE性质和自组装性质的报道相对较少。基于限制分子内转动(Restriction of intramolecular ro
本论文以构筑硫桥联异双核金属配合物为基础,通过辅助配体的理性调变,合成了一系列新型硫桥联钴钌异核配合物,并详细探究了其固氮反应性能,在此基础上进一步考察了其催化氮气还原硅胺化的反应性能。首先,通过单核配合物[Cp*Co(η~3-tpdt)](tpdt=S(CH2CH2S-)2)和[RuCl2(PPh3)3]的自组装反应,合成了新型硫桥联钴钌异核配合物[Cp*Co(μ-1κ~3SSS′:2κ~2SS
有机-无机杂化卤化物钙钛矿太阳能电池具有高光电转换效率、高缺陷容忍性、高吸收系数、可调带隙、长扩散长度和宽吸收范围等优良的光电性能,被广泛应用于光伏器件领域。目前单异质结钙钛矿太阳能电池的认证效率已达到25.7%,展现了可观的前景。虽然制备工艺简单、成本低廉使其具备良好的大规模商业化条件,但想实现大面积生产还需要解决两方面问题——效率低和稳定性差。平面型钙钛矿成膜时,薄膜内部易产生缺陷,这些缺陷会