【摘 要】
:
基于麦克风阵列的波达方向(Direction of Arrival,DOA)估计是研究阵列信号处理领域的一个重要分支,它在军事领域和民用领域有着广泛的应用,如军事雷达定位、车载电话和视频会议系统等。近年来,由于机器学习算法和深度学习在各个领域表现出的优异成绩,将机器学习和深度学习应用于声源定位已经成为了研究的主流方向。相比传统的声源定位算法,基于这类算法的声源定位方法有着更好的鲁棒性和精确性,针对
论文部分内容阅读
基于麦克风阵列的波达方向(Direction of Arrival,DOA)估计是研究阵列信号处理领域的一个重要分支,它在军事领域和民用领域有着广泛的应用,如军事雷达定位、车载电话和视频会议系统等。近年来,由于机器学习算法和深度学习在各个领域表现出的优异成绩,将机器学习和深度学习应用于声源定位已经成为了研究的主流方向。相比传统的声源定位算法,基于这类算法的声源定位方法有着更好的鲁棒性和精确性,针对此类方法,本文做了以下几方面的深入研究:1、为了提高麦克风阵列信号DOA估计的自由度,提出了一种基于稀疏贝叶斯(Sparse Bayesian Learning,SBL)在未知噪声场的欠定宽带DOA估计算法。该算法利用互质阵列可以提供虚拟阵元的特点,增加阵列的自由度。SBL算法无需源信号个数的先验信息,通过定点更新使得稀疏信号重构达到全局收敛的效果,进一步增强了DOA估计在低信噪比情况下的适应能力,提高了DOA估计的稳定性和精确性。2、针对由于混响和噪声干扰导致特征数据不易区分从而使得定位性能下降的问题,本章提出了基于LDA(Linear Discriminant Analysis,LDA)特征变换的LSTM(Long ShortTerm Memory,LSTM)神经网络的DOA估计方法。首先,对麦克风接收的混响信号进行协方差矩阵计算,然后利用协方差矩阵计算线性判别分析投影矩阵W,并转换成投影数据集Z,利用投影数据集Z训练LSTM神经网络得到信号的DOA估计。3、针对传统神经网络在DOA估计上存在稳定性差、精确度低,以及在低信噪比和样本数过多或过少的情况下误差增大的问题,提出了基于SVM(Support Vector Machine,SVM)的局部加权LSTM(Local Weighted Long Short Term Memory,LWLSTM)神经网络的DOA估计方法。首先由麦克风阵列接收宽带信号并进行预处理,然后将处理好的信号协方差矩阵的上三角阵转换为输入序列作为局部加权LSTM神经网络的输入训练网络,得到子带信号的DOA估计结果。最后通过子带信号的输出结果训练SVM模型,将子带信号DOA估计结果进行融合得到宽带信号的DOA估计结果。4、分析第三、四、五章提出的DOA估计算法并实现语音定位系统。实验结果表明,本文提出的DOA估计算法定位精度高,有着更强的鲁棒性,可以满足实际定位的需要。最后,对本文所完成的工作进行总结,并对存在的不足之处做出展望。
其他文献
随着人们对气候不断变化的重视,大气环境探测对传感器设备的观测精度要求也越来越高。地表气温上升的速度约为0.1°C/10年,然而由于太阳辐射的影响,地表气象站观测到的气温会高于真实大气温度,导致存在1°C量级的辐射误差。因此,为降低大气环境探测的辐射误差,有必要设计一种低辐射误差的温度传感器来提高测量精度。针对上述辐射误差问题,本文提出一种旋转式强制通风温度传感器结构。利用计算流体动力学(Compu
“边缘人工智能”(edged artificial intelligence,edged AI)将机器学习带到了移动端,为大数据的研究有效地降低了时间成本、经济成本、能源消耗,在人们的视线中逐渐明朗,众多行业中对边缘AI的技术研究也伴随着人工智能的发展与成熟逐渐崭露头角。随着气象现代化建设的进程,很多地方都建成了自动雪深探测仪,绝大多数地区都采用江苏省航天新气象科技有限公司自主研发生产的地面降水降
光纤传感技术作为信息化社会的一大热点,由此产生的光纤表面等离子共振(Surface Plasmon Resonance,SPR)传感器因其质量轻、抗干扰能力强、成本低、灵敏度高等特点逐渐在各个领域被广泛利用。本文设计了两种基于复合膜的双通道光纤SPR折射率传感器结构并能最终实现双通道测量。论文主要工作如下:1.利用光纤表面等离子共振理论,分别设计了侧边抛磨、级联式多模-单模-多模(MSM)两种双通
图像超分辨率重建能够提高图像的分辨率,恢复图像的高频信息。高分辨率图像拥有更多的信息量,对边缘细节信息描述的更具体。如今,随着计算机设备性能和人工智能技术的提高,把深度学习的卷积神经网络应用于超分辨率重建算法中成为研究热点。基于深度学习的超分辨率重建算法是通过软件的方式来改善图像的质量,具有成本低,灵活性强的特点。本文基于卷积神经网络的“深度”对超分辨率网络进行改进,主要体现在以下几个方面:(1)
随着3D(Three Dimension)成像技术的发展,深度图像发挥着越来越重要的作用。同时微软Kinect和飞行时间(TOF)相机等低成本3D扫描设备的诞生,为计算机视觉、图形、人机交互和虚拟现实等不同研究领域的新应用打开了大门。然而,由深度摄像机捕获的深度图像会产生各种类型的失真,这使得从深度图像中准确估计深度信息变得困难,影响人们的体验。为了解决深度图像的质量下降问题,可以采用合适的深度图
伴随着互联网技术以及多媒体技术的迅速发展,海量的多媒体数据喷涌而出。然而,如何在这些类型多样,数量庞大的数据中获得真正有用的信息成为了一个难题。面对这种信息多元化趋势,跨媒体检索技术应运而生。与传统的单媒体检索相比,跨媒体检索可以满足人们在数据多源化时代下的检索需求。然而不同媒体之间存在着天然的异构鸿沟,这给跨媒体检索的实现带来了巨大的挑战。但多媒体数据具有底层特征差异,高层语义相关的特点,即不同
随着人口老龄化的加剧,人们越来越关注老年人的生命安全。摔倒给老年人的生命安全带来了严重威胁,相关调查研究表明摔倒是造成老年人意外伤害的首要因素。老年人摔倒后如果没有人及时发现,往往会错过最佳救治时间,造成无法挽回的严重后果。因此对摔倒识别方法进行研究,有效识别出老年人异常摔倒具有重要的现实意义。本文通过对摔倒识别方法进行研究,将机器学习理论方法运用在摔倒识别领域,准确有效识别出老年人有可能出现的异
风速风向的测量对我们的生活有着重大意义,热式测风法设计出的测风仪由于体积小、成本低、精度高,因此被广泛应用于各个领域。然而我国对热式测风法的研究起步较晚,与国外仍有一定差距,且目前市场上销售的手持式热线式测风仪只能测量风速不能测量风向。因此,本文提出一种新的热式测风方法,利用温度传感器设计温度阵列,设计出一款基于温度传感器阵列、既能测量风速又能测量风向的热式测风仪。本文根据热温差原理设计了十字型以
传感技术作为物联网技术创新中的重要组成部分,是当今人类拓展自身感知能力的重要手段,也是信息化时代通信和计算机传输与处理信息的基础。基于光纤技术设计的传感器,具有灵敏度高、测量范围广、稳定性高和抗电磁干扰能力强等优点。这些优势使得光纤传感器在特定场合下具有不可替代的作用,如在交通运输、石油勘测、食品安全和航空航天等领域。伴随物联网和数字中国建设脚步的不断加快,提高光纤传感器的机械强度和多参数测量能力
科技的发展使人们对图像分辨率有了更高的要求,高分辨率图像比低分辨率图像包含更多的信息并具有更好的视觉感受。因此,通过超分辨率重建技术改善图像分辨率是计算机视觉领域一项重要的研究课题。近年来,深度学习技术的发展使得图像超分辨率重建方法的性能相较于传统方法有了极大提高,然而目前很多基于深度学习的超分辨率重建网络都以前馈的方式学习图像特征,忽略了反馈机制。反馈机制可以使网络学习到高分辨率和低分辨率图像之