论文部分内容阅读
相对于某固定尺寸的飞行器,根据气体的稀薄程度不同,可以将大气分为:低空高密度的连续流区,高空极低密度的自由分子流区和介于两者之间的过渡区。飞行于过渡区中的飞行器可以称为过渡区飞行器。随着航空航天事业的发展,越来越多的新型飞行器出现在过渡区中,其周围流场的大部分区域或局部区域存在着明显的稀薄效应,甚至可能出现连续流和稀薄流混合的复杂流场。为了适应这些过渡区飞行器的发展,需要对它们周围的流动问题进行深入研究。本文重点围绕过渡区飞行器所遇到的特殊流动问题,建立相应的数值计算程序,对其进行模拟研究,同时也讨论部分流动机理问题和工程方法的适应性问题。首先,建立了CFD/DSMC混合计算程序,首次对在高空过渡区飞行的火箭模式激光推进器周围的高温连续/稀薄混合流场进行了数值模拟研究,并与低空大气吸气模式激光推进器周围的连续流场作对比。研究发现,过渡区火箭模式流场中,激波厚度明显增加,激波传播速度加快,推力产生提前,得到的比冲大于800s;另外,高温效应则减慢了激波传播速度,延迟了推力的产生,并导致冲量耦合系数和比冲降低。之后,采用DSMC方法,对过渡区稀薄环境下的激波反射规律进行了数值模拟研究,分析了稀薄效应对马赫数变化引起的迟滞现象以及马赫杆高度的影响。研究表明,在本文给定的条件下,存在一个临界努森数,当来流努森数小于该值时,会发生正规反射到马赫反射的转捩,反之则无;另外,随着努森数的增加,马赫反射中的马赫杆高度呈近似线性降低。最后,分析了sine-squared和erf-log两种桥函数在一般超音速过渡区气动特性系数计算方面的适应性问题。研究发现,随着飞行马赫数的降低,sine-squared桥函数的精度明显下降,而erf-log桥函数始终保持很好的精度。建议采用erf-log桥函数,计算以低超音速飞行的亚轨道飞行器的过渡区气动特性系数。