论文部分内容阅读
白光LED(White Light Emitting Diode,简写W-LED)凭借其节能、绿色环保和发光亮度高等优点,已经被广泛关注和研究。但是由于缺少能被紫外/近紫外光LED芯片有效激发的高效红色荧光粉,从而限制了白光LED的发展,因此探索合成新型红色荧光粉是非常重要的。Eu3+离子荧光寿命长、色纯度高、受外界影响较小,是制备红色荧光粉必选的稀土离子。本文以探索新型含Eu硼酸盐发光材料为出发点,合成出三种新型稀土硼酸盐单晶及其荧光粉。通过单晶和粉末XRD测定了晶体结构和相纯度,使用红外和拉曼光谱、紫外-可见漫反射吸收光谱以及荧光光谱,研究了晶体中的存在的阴离子基团以及荧光粉的发光性质,还对两个代表性的化合物进行了电子结构理论计算。首先,我们制备了一种新型硼酸盐Eu Cd3(Al O)3(BO3)4,该物质属于碳硼锰钙石型(gaudefroyite)结构,以P63空间群结晶,晶胞参数:a=10.390(2)?,c=5.7244(14)?、V=535.2(2)?3、Z=2。该化合物具有三维网络结构,其中BO3基团桥连一维[Al O4]n5n-链,从而形成包含两类孔道的三维网,小的孔道容纳Eu3+/Cd2+离子,大的孔道容纳Eu3+/Cd2+离子和BO3基团。红外和拉曼光谱证实了BO3基团的存在。我们对Eu Cd3(Al O)3(BO3)4荧光粉的自激活光致发光进行了研究。由于Eu3+离子的5D0→7FJ(J=0,1,2,3,4)电子跃迁,发射光谱由位于红和橙色光谱区域中的几组峰构成。荧光衰减曲线能被双指数函数拟合。此外,还对Eu Cd3(Al O)3(BO3)4的能带结构进行了理论计算。其次,我们又合成了两种碱土-稀土金属硼酸盐M3Eu2(BO3)4(M=Ba,Sr),它们均以Pnma空间群结晶,晶胞参数:Ba3Eu2(BO3)4(1),a=7.6970(15)?、b=16.554(3)?、c=8.9300(18)?、V=1137.8(4)?3、Z=4;Sr3Eu2(BO3)4(2),a=22.2553(4)?、b=15.9122(3)?、c=8.7568(2)?、V=3101.05(11)?3、Z=12。化合物1与Ba3Re2(BO3)4(Re=Y、La、Pr、Nd)系列化合物的晶体结构相同,都具有三维网状结构,该三维网由BO3三角形和8配位的M1、M2、M3位点构成,并且这三个位点均为Eu/Ba混合占据。2是1的三重超结构。红外和拉曼光谱进一步证实了这两种化合物中都含有BO3基团。两个样品的发射光谱由五组发射峰构成,它们分别属于Eu3+离子的5D0→7FJ(J=0,1,2,3,4)跃迁,都显示了红橙光发射,并且荧光衰减曲线都符合单指数行为(荧光寿命:τ1=1.358 ms,τ2=0.887ms)。1的多晶样品具有非常高的量子发光效率(QE=90.09%),这有利于在暖白光LED上的应用。此外,使用X射线光电子能谱分析了元素的化学价态,并研究了化合物1的电子结构。以上三种荧光粉的量子效率均高于商用红色荧光粉Y2O2S:Eu3+(QE=35%,λex=317 nm)的量子效率,并且都能被紫外/近紫外光有效激发,表明它们具有潜在应用价值。