论文部分内容阅读
复杂场地的土层地震反应分析对结构的地震反应计算及抗震安全性评价有重要意义。采用直接有限元法对土层进行三维建模,可使系统的计算力学模型更加符合实际情况。但由此带来的计算量之大,使得普通微机的硬件环境难以胜任。在此背景下,本文将并行有限元理论引入到土层地震反应分析领域,主要完成了以下几方面的工作:1.探讨了将约束子结构模态综合法引入到复杂场地地震反应分析领域的可行性,建立了在一致输入下基于约束子结构模态综合法的土层等效线性化分析的计算框图。在此基础上,为提高计算效率,结合土层有限元模型自身的特点和约束子结构本身的性质,提出了几种改进措施。2.结合数值试验,给出了行波输入下沿地震波传输方向上的土层有限元网格划分原则。推导了静力子结构方法计算拟静力位移的步骤,通过实际算例验证了行波输入下利用约束子结构模态综合法进行复杂场地地震反应分析的可行性。3.利用神经网络方法研究了地震波激励作用下,土层阻尼系数转换频率与各主要影响因素之间复杂的非线性关系。通过比较时域和频域的计算结果,探讨了在土层时域分析中,如何由滞后阻尼系数形成阻尼矩阵的问题。利用实际地震波的分析结果,建立了阻尼系数转换频率的BP神经网络预测模型,为利用滞后阻尼系数在时域中进行土层反应分析创造了条件。4.利用面向对象方法完成了串行程序的编制,列出了程序中涉及到的一些主要类的接口。并结合几个算例说明了使用本文串行程序进行有限元建模时在人工边界的处理和单元类型的选择方面应该注意的一些问题。5.介绍了并行计算系统的主要种类和相关特性以及构建并行计算系统的硬件要求、系统软件及编程环境,讨论了在其上分布并行计算的一些概念和需要解决的问题。基于Windows操作系统和MPI并行程序开发环境,使用C++语言编写了复杂场地地震反应分析的并行有限元程序ParaSR3D,并在高性能计算机群上对该程序的并行性能进行了评测。6.对实际河谷地形进行了等效线性化分析。计算结果表明,不同的行波速度和行波输入方向对地表加速度的峰值和相位有不同程度的影响,对于大跨度结构来说考虑多点输入有助于科学合理的进行地震反应分析。