微型流化床反应器内流动和非平衡特性的模拟研究

来源 :河南理工大学 | 被引量 : 0次 | 上传用户:jwliangbo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
反应动力学参数的准确获取,对实际工业应用和反应釜的设计具有重要意义。微型流化床等温微分反应分析仪,由于其优异的传热传质特性弥补了现有分析仪器在等温快速复杂化学反应中的不足。气相返混是气固流化床设计中的一个重要问题,气相返混程度的大小,必然会影响化学反应的进程,进而影响反应动力学参数的获取。微型流化床作为反应分析仪的主体部分,深入研究微型流化床内流体流动结构特性、颗粒速度分布特性和气相返混特性等,对微型流化床结构设计与实际应用具有重要意义。论文的主要研究内容和结论如下:
  1.微型流化床内流动特性研究。基于颗粒轨道模型系统研究了流化介质间摩擦系数和表观气速的大小对微型流化床内流动结构与循环模式的影响,进而对比了微型流化床与常规流化床在流动结构上的区别,并将双流体模型与颗粒轨道模型进行对比,验证双流体模型在气固流态化系统中的适用性。
  2.微型流化床内非平衡特性研究。通过颗粒速度分布函数偏离麦克斯韦分布的程度来描述,并通过颗粒温度来进一步理解微型流化床内非平衡特性。结果表明,微型流化床内颗粒速度在不同位置和方向上具有不同的分布特性,轴向方向上气固耦合作用剧烈,颗粒系统偏离平衡态。在径向位置上,流化床内中心轴处颗粒脉动较弱,颗粒系统接近平衡态。
  3.微型流化床内气相返混特性定量研究。基于双流体模型定量考察了微型流化床内气相返混特性,研究发现,微型流化床内,流化介质粒径dp的増大,内径D和静止床高Hs减小,对气相返混具有抑制作用。表观气速Ug由低到高,对气相返混先起抑制作用,后促进作用。进而研究发现,在微型流化床内对流传质速率和扩散传质速率存在协调竞争机制,在低表观气速Ug下,对流传质速率占主导地位,在高表观气速Ug下,轴向扩散速率占主导地位。进一步以空床RTD参数作为标准操作线,结合平均停留时间(t)与皮克列数Pea,g,当峰高E(t)h大于1.25,方差σθ2小于0.25,平均停留时间(t)小于1.2s,皮克列数Pea,g大于30时,微型流化床内气相返混可忽略,气体接近平推流。
其他文献
模和子模函数的top-k优化问题一直是策略优化问题的重点和难点。近年来,随着人工智能的兴起,模函数和子模函数被用到了越来越多的实际应用建模中。在建模实际应用中,为了适用更多的应用场景,研究者们都希望在更普适的模型下研究模函数和子模函数top-k优化问题。基于以上背景,本文选择了模函数优化中最受关注的多臂赌博机问题,和子模函数优化中最受关注的影响力最大化问题展开了研究。本文立足于更普适的模型下研究这
单变量时间序列通常是一组以均匀时间间隔隔开的连续时间点上的测量值。它是一种结构化的数据,具有高维,序列长度不一,观测值在时序上存在一定的依赖关系等特点。典型的基于模型的方法(如回声状态网络)为每个时间序列训练出一个函数模型,在模型空间中用函数模型之间的相似性来度量原始数据之间的距离,然而在非欧的模型空间中,传统的欧式距离度量方式已经不能很好地满足要求,因此探索出具有鉴别力的距离度量方式有助于提高模
[db:内容简介]
该文简要的介绍了电去离子(Electrodeionization,简称EDI)的工作原理,提出了水中杂质离子在EDI中的四个传质过程,即(1)杂质离子从水相到树脂相的传质;(2)杂质离子在树脂相中的传质;(3)杂质离子从水相到离子选择性交换膜的传质;(4)杂质离子在离子选择性交换膜内的电迁移传质;并推导出上述四个过程的传质速率方程.该文对EDI去除总氨(包括非离子态氨和离子态氨)的研究,其目的主要
学位
EDI
本文选用廉价易得的腐殖酸铵作为碳前驱体,采用简单工艺合成了一系列杂原子掺杂以及金属氧化物负载的腐殖酸铵基复合材料,分别研究了它们的物理化学特性,并考察了用作超级电容器电极材料的电化学性能。  将H3BO3与腐殖酸铵混合,通过一步炭化法制备了B/N共掺杂多孔炭纳米片。研究表明,BNHC-800样品中孔率高(40.84%),BCO官能团丰富(可提供赝电容)。BNHC-900样品具有较高的比表面积(59
碳量子点是目前研究非常广泛的一种荧光碳纳米材料,其低毒性、良好的生物相容性、发光波长可调、光稳定性好、易于功能化、易于制备等优点,使得这种材料在发光材料、荧光传感、环境监测、生物医疗等领域备受关注。煤的碳含量高,来源广泛,价格低廉,是一种潜在的碳量子点前驱体。但是已有的煤基碳量子点的方法存在着能耗高、污染大、发光颜色单一等弊端,因此,本文通过高铁酸钾预氧化与双氧水氧化结合的“两步法”,实现对煤基碳
随着人们对公共安全和食品安全的日益关注,有毒物质的微量检测成为热点课题。将纳米材料与镧系配合物结合,形成镧系配合物功能化纳米复合材料并用于环境中有毒物质的检测正成为新的研究趋势。本论文的主要研究工作是基于稀土金属配位发光特性并结合纳米材料结构和性质的多样性来设计合成能够应用于实际生物样品可视化检测的多色荧光探针。本论文的绪论部分主要介绍与课题相关的研究背景,重点介绍了荧光探针的主要识别机理和本论文
水污染是人类所面临的严重挑战之一。作为一种绿色可持续技术,半导体光催化有望在水处理和环境净化中发挥重要作用。二氧化钛(TiO2)是光催化领域中应用最广泛的材料。然而,TiO2仅在紫外光下具有高反应性,提高其可见光光催化活性是其工业化应用的重要前提。鉴于石墨烯量子点(GQDs)在提高TiO2可见光光催化活性方面所显示出的巨大潜力,本文以煤焦油沥青(CTP)为前驱体,采用温和氧化法制备了GQDs;以C
学位
随着科学技术的飞速发展,现代工业化不断推进,丰富了人们的物质生活,但环境污染作为社会生产发展的副产品已经严重影响到了人类的生活,有毒有害气体作为环境污染中重要的一类对人们的日常生活造成了的危害。因此,发展可以快速检测有毒有害气体的传感器已经刻不容缓。本文采用溶剂热法分别制备了四种复合材料:纳米颗粒MgFe2O4/g-C3N4复合材料,多孔微球MgFe2O4/g-C3N4复合材料,核壳微球ZnFe2
全钒氧化还原液流电池以其超大的存储容量、灵活的结构设计、较低的储能成本以及较高的能量效率等优点在大规模储能技术领域具有强大的竞争力,但其性能的进一步提高也受到了诸多因素限制,其中,电极催化活性是决定电池容量和效率的重要影响因素。本论文聚焦于钒液流电池电极的功能化改性和复合形貌的构建,由点到面系统地研究了催化活性位点,杂元素以及多维结构对电极电催化性能的影响。研究发现,经过元素掺杂及结构设计的功能化