论文部分内容阅读
重金属,如汞(Hg)、铅(Pb)、镉(Cd)、铬(Cr)以及类金属砷(As)等是生命活动所非必需元素,在自然环境中易于富集,是对生物体及人类等生命活动危害较大的一类污染物。三峡水库是目前世界上最大的水利工程,它的建成及运行使库区干流原有的水文、水动力特征发生改变。而在干流回水顶托影响下,库区大小支流形成库湾回水区,致使支流成为泥沙和重金属等污染物沉积的重要区域。因此,探索库区支流沉积物重金属分布及其生态风险极为重要。另一方面,重金属中Hg特别是其有机化的产物——甲基汞(Me Hg),具有极高的食物链富集性和生物毒性,而水生环境特别是河口系统是一个利于汞甲基化的体系,库区支流河口汞的甲基化/去甲基化也值得特别关注。为此,本研究选择三峡库区一典型支流——汝溪河为研究对象,系统地调查了汝溪河水体及沉积物中8种重金属(Cd、Zn、Pb、Mn、Cu、Hg、Cr和Ni)的空间分布状况,分析了其来源与生态风险;同时,考虑到Hg环境生物地球化学性质的特殊性,在春季(退水期)、夏季(落干期)、秋季(蓄水期)、冬季(淹没期)一个蓄水周期下,调查了河口水体和沉积物中各形态汞的分布特征,研究了汞的迁移转化过程及其主要影响因素,并利用双稳定同位素(199Hg Cl2和Me201Hg)示踪法,探索了汝溪河河口沉积物中汞的甲基化/去甲基化的主要影响因子。主要研究结果如下:(1)汝溪河表层水体8种重金属中除Ni外,各元素含量均低于地表水环境质量Ⅰ类标准限值。沉积物中8种重金属含量均超过长江水系沉积物背景值,空间上总体表现为受汝溪场镇生活影响河段>回水区>自然河段,富集程度为:Cd>Hg>Zn>Ni>Cr>Cu>Mn>Pb,且回水区河道沿岸沉积物及土壤中重金属含量均远低于沉积物中,说明河道沿岸沉积物和土壤并不是汝溪河回水区沉积物重金属的主要污染来源。在垂向分布上,受汝溪场镇生活影响河段Hg的污染较重,为背景值的6.1倍,河口为背景值的2.14倍。同时,水体-沉积物中的分配系数Hg和Cd相对较小,具有较强的二次释放潜力。地累积指数评价得出汝溪河整体呈现Cd、Zn和Hg的轻度至偏中度污染,生态风险评价显示重点防范Cd和Hg的污染,生物毒性效应评价得出,Ni有10%~75%可能对生物造成毒害效应,Cd、Zn、Hg、Cu、Pb、Cr有<10%的可能会出现生物毒害效应。综合效应系数表明汝溪河沉积物重金属的生物毒害风险为低级~中低级。(2)汝溪河河口水体中Hg明显低于自然未污染淡水和低于USEPA防止对水生生物造成不良慢性营养的限值。溶解态汞(DHg)、颗粒态汞(PHg)、活性汞(RHg)和总汞(THg)浓度在季节上表现为春季最高,而总甲基汞(TMe Hg)和溶解态甲基汞(DMe Hg)浓度均表现为夏季最高。在垂直剖面上,THg浓度在春季和秋季表现为随水深增加而逐渐降低,夏季呈现先降低后增大的趋势,冬季未呈现明显的浓度梯度变化。TMe Hg浓度在夏季、春季和秋季中均表现为随水体深度的增加而增加的趋势,而TMe Hg浓度同THg浓度相似在冬季未呈现明显的梯度差异。(3)汝溪河河口沉积物中THg浓度在全球土壤汞的范围之内。THg浓度在各样点中均不具显著性差异(ANOVA test,p>0.05),同时,在四个季节上差异不明显(ANOVA test,p>0.05),冬季略高于其他季节。垂直剖面上,THg浓度表现为除与干流直接交汇的样点最大值在8cm外,其余样点最大值均出现在表层或次表层,且在垂向上均呈现随深度增加而减少的趋势。河口沉积物中TMe Hg浓度接近于三峡库区消落带裸地土壤汞浓度。TMe Hg浓度在受上游来水和干流水体倒灌共同影响的S7样点TMe Hg浓度显著高于其他样点(ANOVA test,p<0.05)。在季节上表现为夏季>秋季>冬季>春季,且四个季节之间均表现出显著性差异(ANOVA test,p<0.05),其中S7样点TMe Hg在季节上差异较为明显。TMe Hg浓度在垂直剖面上基本呈现随深度的增加而降低的趋势,除与干流直接交汇的S10样点TMe Hg浓度最大值出现次表层外,其余样点最大值出现在沉积物的表层。(4)汝溪河河口受三峡库区水位和上游来水共同影响的样点沉积物THg在季节上没有明显的季节分布,Me Hg呈现明显的季节分布:秋季>夏季>冬季>春季,THg、Me Hg和生物可利用性汞在垂直剖面上沉积物基本呈现随深度增加而减少的趋势。沉积物孔隙水中DHg和DMe Hg在垂直剖面上总体均表现为随深度增加而下降,季节上DHg和DMe Hg最大值均出现在0~2cm的表层,且均远高于上覆水体中DHg和DMe Hg浓度,在季节分布趋势均为秋季>夏季>春季>冬季。无机汞在汝溪河河口沉积物固/液界面之间的分配系数从高到低依次为,冬季>春季>夏季>秋季。甲基汞在汝溪河河口沉积物固/液界面之间的分配系数从高到低依次为,冬季>秋季>夏季>春季。且沉积物孔隙水中甲基汞与沉积物中甲基汞呈显著性相关(r=0.737,p<0.001,n=23)。河口沉积物孔隙水中DHg和DMe Hg的扩散通量都存在着季节变化,DHg的扩散通量在秋季最高,冬季最低,甲基汞的扩散通量随孔隙水中DMe Hg浓度的增大而增大,其中夏季甲基汞的扩散通量最大,冬季最小。(5)汝溪河河口沉积物孔隙水中甲基汞含量和生物可利用性汞呈正比关系(r=0.21,p<0.05,n=23),与相应的SO42-之间呈正相关关系(r=0.23,p<0.05,n=23),而与AVS呈显著负相关(r=-0.35,p<0.01,n=23),沉积物孔隙水硫酸根离子含量和Me Hg含量的最大值均位于表层,且含量随深度的随深度增加而降低。同时,孔隙水中甲基汞含量与活性铁的含量呈显著的正相关关系(r=0.16,p<0.01,n=23),与Fe(Ⅱ)的含量呈显著的负相关关系(r=-0.38,p<0.01,n=23),说明沉积物生态系统中铁和硫的生物地球化学循环在微生物的作用下共同影响无机汞的甲基化过程。(6)汝溪河河口沉积物的甲基化速率和去甲基化速率在30℃条件下均显著高于12℃条件下,这与野外调查的结果一致。同时,汝溪河河口培养沉积物中添加了广普杀菌剂氯霉素、产甲烷菌抑制剂2-溴乙磺酸钠(ESA)和钼酸钠(Na2Mo O4)后,沉积物均呈现了明显的去甲基化速率降低的过程。同时,广谱抑菌剂氯霉素的添加,沉积物中甲基化速率也呈现明显的下降。添加ESA、水合氧化铁(HFO)、硝酸钠(Na NO3)、葡萄糖(C6H12O6)和硫酸钠(Na2SO4)后,沉积物中甲基化速率均呈现一定程度的增加,其中Na2SO4的添加使甲基化速率常数增加了约2倍。在共同添加Na2Mo O4和HFO后,甲基化速率并没有增加反而降低了约55%,而共同添加Na2SO4和HFO后,甲基化速率增加了近3倍,说明在硫酸盐还原菌(SRB)和铁还原菌(Fe RM)都有活性的处理中具有了最高的甲基化速率。综合实验结果表明,汝溪河河口培养沉积物中控制甲基化过程的关键微生物为硫酸盐还原菌。