红外修正的Horava引力理论研究

来源 :信阳师范学院 | 被引量 : 0次 | 上传用户:avim03
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
最近,Horava利用Lifshitz标度提出了一个紫外区具有完善性质的引力理论。为了满足重整化,该理论在紫外区放弃Lorentz对称性并引入高阶度规导数从而得到非相对论的幂次计数重整化引力理论。该理论被称为Horava引力理论或简写成HL引力。此后,为了在低能量区得到闵氏真空,Kehagias和Sfetsos (KS)引入与三维几何中里契标量相关的项得到了静态球对称的渐近平坦黑洞解,该解也被称为红外修正Horava引力中的黑洞,本文简称KS黑洞。本论文以KS黑洞为研究对象,详细研究其霍金辐射、似正规模、光线偏折和量子统计熵等内容。在第一章中,论文主要论述了与黑洞和Horava引力等相关的背景知识。在第二章中,论文首先用测地线方法得到了黑洞视界面处的霍金辐射谱,结果发现真实的辐射谱偏离纯热谱且与辐射粒子的质量无关。其次借助复路径分方法得到视界面处费米子的隧穿率,并找到隧穿率与视界温度之间的关系。在第三章中,论文分别利用三阶和六阶WKB数值方法,得到了费米场扰动的低模频率。结果发现:当引力参数α和角动量数k固定时,模数n越大,费米场振动越慢,衰减越快;当固定k和n时,α越大,费米场振动越慢,衰减越快。因此,与普通的Schwarzschild黑洞相比,KS黑洞中的费米场将衰减得更慢。在第四章中,论文利用作用量分析法得到了黑洞时空中光线偏折角的解析表达式,并结合天文观测(long-baseline radio interferometry、Jupiter measurement、 Hipparcos satellite)给出了太阳、木星、地球等系统对参数α的限制。在第五章中,论文利用广义测不准原理(Generalized Uncertainty Principle,GUP)与’t Hooft的砖墙方法(Brick Wall Method, BWM)两种方法分别研究了黑洞的量子统计熵。研究发现如果适当调节能层厚度或者适当地选取截断因子,黑洞熵可以回到Bekenstein面积熵的形式。以上研究结果提供了寻找KS黑洞的依据,为将来更详细地研究该黑洞提供丰富的参考资料,也促使我们更充分地理解Horava引力理论。
其他文献
随机和时滞现象都是自然和社会实践中普遍存在的现象,它们时常导致很多动力系统无法正常进行,即出现不稳定甚至崩溃的现象,因此,随机时滞微分系统的稳定性问题一直是人们讨论的热门问题,并且已经取得了大量的重要研究成果.但在现实中有很多动力系统,除了会受到随机和时滞的影响外,还会受到外界许多突然的扰动与冲击的影响进而出现跳跃的现象,因此传统的随机时滞微分方程已不适合描述这类现实系统,而带有Lévy噪音或Po
典范基在量子群及其表示理论中起着重要的作用,是研究量子群及其表示理论的有效工具,国内外许多代数学工作者为精确确定典范基元素做了大量卓有成效的工作.但是,到目前为止,只有少数量子群的典范基元素被完全计算出来,而找出典范基中的单项式元素(即紧单项式)是关键步骤.本文将给出D4型量子群在t值≤8时的全部紧单项式.本文共分五章,结构安排如下在第一章中,我们介绍了量子群以及量子群的典范基的背景知识,提出了本
本文选取具有重要理论意义和应用前景的SiC、BN和SO+作为研究目标,利用内收缩多参考组态相互作用方法(MRCI)和考虑Davidson修正的MRCI+Q方法并结合Dunning等的相关一致基为研究手段,对这三组分子(自由基和离子)的低电子态进行了高精度的从头计算,得到了它们的势能曲线、光谱常数和分子常数.主要内容如下:(1)利用MRCI和Dunning等的相关一致基计算了SiC自由基25个电子态
早期治疗对于降低或消除由HIV或机会性感染引发的疾病有重要作用根据这一特点,本论文首先建立一个含有感染年龄的HIV/AIDS人口模型.药物治疗仅仅作用于感染年龄θ小于τ的感染人群.分析结果表明,即使其他的感染性个体没有接受治疗,在感染个体存在自然死亡率的条件下,该策略依然会导致HIV/AIDS(?)肖除.当选取恰当的脉冲周期和药物治疗比例满足R.1(p, T, T)<1时、存在一个全局稳定的无病平
本文建立和研究了两斑块中具有变异的两菌株(药物敏感菌株和耐药菌株,假设药物敏感菌株可以变异为耐药菌株)肺结核模型.给出了两菌株相对应的基本再生数R10,R20和侵入再生数R12的表达式,给出了无病平衡点,耐药菌株占优平衡点和共存平衡点的存在性条件,证明了当R0=mox{R10,r20}<1时,无病平衡点全局渐近稳定:当R121时,第奇数个共存平衡点
量子群的典范基是研究量子群及其表示理论的有效工具,它具有很多优良的性质.单项式是量子群中最简单的元素,寻求典范基中的单项式(即紧单项式)是确定典范基的基础工作.本文将给出A5型量子群在t值≤6时的全部紧单项式.全文分三章:在第一章中,我们介绍了量子群的典范基的研究背景以及本文的研究任务.在第二章中,我们回顾了寻求量子群中紧单项式所需要的准备知识.在第三章中,我们给出了A5型量子群中t值≤6时的全部
保护淡水资源是人类持续关注的话题之一.近年来水环境发生变化,有些湖泊氮、磷等元素富集,造成水体营养过剩,进而导致蓝藻水华频发,水质下降,水体恶臭,甚至影响人们饮用水安全.面临这一现状,研究者们已经采取各种措施来治理蓝藻,如物理、化学方法等.本文考虑营养与浮游植物相互作用的关系,建立相关数学模型,运用脉冲微分方程、Filippov动力学系统,分析相应模型的动力学性质.借助于Matlab软件进行数值模
脉冲微分方程不仅比相应的微分方程理论丰富,而且它更加精确和实际的刻画了许多自然现象.本文研究了基于对某一种群(捕食者或被捕食者)的收获行为的状态依赖脉冲微分系统,即当种群中被收获的物种数量达到某一程度时,决定是否实施一次收获行为。数学上我们结合半连续动力系统的相关理论,研究了所提出模型的动力学行为,其中包括周期解的存在性、唯一性和稳定性,从生物学的角度来看,我们的研究具有很强的生物学背景,得到的理
“高校思想政治工作关系高校培养什么样的人、如何培养人以及为谁培养人这个根本问题。”在新的时期,党和国家对当今大学生教育工作提出新的期望和要求。自1979年中美建交和签订双边贸易协定以来,两国之间的贸易发展迅速,但是摩擦也不断,尤其是自2016年特朗普当选美国总统以来,以美中货物贸易巨额逆差为由,美国采取了一系列针对中国的行动,挑起了中美之间的贸易摩擦。中美贸易战发生后,中美关系问题再次引起了全世界
作者在对急性痛风性关节炎的治疗中,根据中医理论辨证论治,采用三妙散加味拟成消痹去痛汤以清热利湿、健脾消食、活血定痛,再配合金黄散外敷以清热解毒。临床观察33例,总有效率88%。