论文部分内容阅读
相比传统的宽谱光源,超连续谱光源具有光谱范围宽、空间相干性好、光谱功率密度高等优点,因而在光谱学、生物医学以及光电对抗等领域有着广泛的应用前景。获得高平均功率和高光谱功率密度的超连续谱是相关领域的一个研究热点。本论文针对基于光子晶体光纤的高功率全光纤超连续谱产生技术开展了研究。本论文的研究工作主要包括以下几个方面:1、总结和归纳了光纤中超连续谱产生的相关机理,介绍了单芯和多芯光子晶体光纤的参数和特性,为后续超连续谱产生的实验研究工作提供了分析依据。攻克了15/130双包层大模场光纤与光子晶体光纤的超低损耗熔接技术,为搭建基于光子晶体光纤的高功率全光纤化超连续谱光源奠定了基础。2、对基于单芯光子晶体光纤的高功率超连续谱产生技术开展了研究:提出了在预放大器和功率放大器中分别采用高掺杂浓度和低掺杂浓度增益光纤的皮秒光纤激光MOPA放大方案,采用纤芯直径为15μm的双包层光纤搭建了最高平均输出功率为125 W、脉冲重复频率可调的高功率皮秒光纤激光器,并将其用作超连续谱产生的泵浦源。同时,采用纤芯直径较大的单芯光子晶体光纤作为超连续谱产生介质,研制了结构简单紧凑的高功率全光纤化超连续谱光源。该超连续谱光源的最高平均输出功率为101 W,光谱覆盖范围为700 nm至1700 nm以上,泵浦激光到超连续谱的转换效率为78.9%。这是首个公开报道的基于单芯光子晶体光纤实现的平均输出功率超过一百瓦的超连续谱光源。3、对基于多芯光子晶体光纤的高功率超连续谱产生技术开展了研究:研制了首个公开报道的全光纤化多芯光子晶体光纤超连续谱光源。采用高功率皮秒光纤激光器泵浦两种国产七芯光子晶体光纤,均实现了平均输出功率超过100 W的全光纤化超连续谱输出。对比研究了光纤结构和泵浦激光脉冲重复频率对七芯光子晶体光纤中超连续谱产生过程以及最终形成光谱的影响。对基于多芯光子晶体光纤的高功率超连续谱光源的光谱拓展能力和功率提升潜力进行了分析和讨论,结果表明高功率光纤激光器结合特殊设计的多芯光子晶体光纤,可以获得平均功率更高、光谱更优化的超连续谱。该研究成果对更高功率全光纤化超连续光源的研制具有重要的参考价值。