基于视频的人脸识别和运动人体检测研究

来源 :中国科学院研究生院 中国科学院大学 | 被引量 : 0次 | 上传用户:kaka43210
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在生物特征识别技术中,人脸识别和人体检测是最自然、直接和友好的手段。理论上,人脸识别和人体检测的研究涉及多个学科领域,已经成为模式识别和人工智能领域中极富挑战性的热点课题之一,具有重要的理论研究价值。现实中,该项技术在身份认证、电子商务、视频监控、人机交互等领域具有广阔的应用前景。本文主要介绍了作者对人脸识别和人体检测中一些算法的研究,在人脸识别方面,主要对肤色模型、人脸灰度组合特征提取、多视角人脸检测、人脸识别中的小样本和信息融合问题等内容进行了研究;在运动人体检测方面,主要研究了复杂条件下运动区域分割和基于扩展梯度方向直方图的人体检测。具体的研究成果主要包括:   (1)在人脸检测方面,针对现有模型对肤色空间刻画的不足,提出一种基于参数查找表的肤色检测算法。该方法将肤色和非肤色看作两类模式,通过在YCbCr颜色空间的统计,计算样本在不同色度下沿亮度的概率分布,分类采用贝叶斯判别规则,查找表用于存储模型参数,实现了快速查找和计算。实验中,从像素样本分类和彩色图片分割两个方面对算法的检测性能进行对比,说明其有较高的检测率和较强的鲁棒性。   针对基于AdaBoost人脸检测算法训练极为耗时,且对人脸旋转的检测能力较弱的不足。分别提出组合Haar-like特征和宽度优先的决策树的头部姿态估计。特征组合基于人脸检测中多个特征共现的特性,特征共现性可以更好地捕获人脸模式的相似性。与AdaBoost算法每个弱分类器由1个特征构成不同,提出的方法在每个弱分类器中可以有n个特征构成,除了利用积分图计算单个特征的特征值,组合特征的特征值采用二进制编码方式,因此可以快速计算特征值且对噪声不敏感。通过与Viola算法比较,组合特征可以使训练错误率降低37%而训练速度提高2.6倍。针对旋转人脸检测,提出宽度优先的的决策树检测框架,目的是能够检测一定角度内的平面内外旋转人脸。框架可以检测5个范围角度左右偏转和3个角度范围的俯仰旋转。   (2)在人脸识别方面,针对常用PCA和LDA在处理高维小样本分类问题的不足,提出的多子空间线性判别分析。算法基于最大散度差准则,利用多线性子空间技术对每类样本进行单独描述,针对每类样本提取最适合分类的特征子空间,使之更准确地反映样本在类内类间的分布关系;分类时综合考虑投影后样本的概率分布模型,判别不是依据距离,而是按照贝叶斯决策规则得到的隶属置信度作为衡量标准,并以此作为分类的依据,选取最可能的类属划分。实验结果表明本方法的有效性,和单一子空间方法相比,它可以处理由于类重叠和投影后类扭曲等难以分类的情况。在IMDB人脸数据库测试中,就识别率而言,有所提高。   提出人脸识别的信息融合框架,根据认知科学,人类的认知过程是一个从粗到精,逐步细化的过程。与全局特征的整体描述不同,局部特征对人脸模式的类内变化不敏感,对表情、光照、遮挡等变化有更高的鲁棒性,因此通过全局和局部特征的结合进一步提高识别率是一个可行的方法。基于信息融合的人脸识别框架由两级分类器组成,首先利用全局分类器对输入图像进行识别,根据KNN规则,获得K个潜在候选项,进一步,对每个候选项根据局部特征分类器计算得分和排名。对于特征提取,使用LDA和Gabor小波变换分别表示全局和局部判别信息。特别是为了在更充分意义上实现匹配,采用了权重Gabor特征,即根据面部区域在识别中的重要性的不同,分别给予提取的Gabor特征赋予不同的权重系数,权重系数的计算考虑了面部不同部位的信息熵。实验结果显示方法可以提高在表情和光照变化下的人脸识别率。   (3)在视频序列的运动区域提取中,提出基于场景变化分析的自适应背景更新方法,采用了临时背景的概念,将背景划分成原始背景和临时背景;提出了场景分析的方法,利用若干帧连续图像中每点像素灰度值样本,估算对应像素点的灰度均值和方差。根据正态分布的“3σ原则”判断背景中变化,包括整体光线突变及部分光线突变、前景目标与背景内容间相互转化等情况进行判断,并针对相应的情况采取不同的更新策略和更新率,消除背景变化对目标分割的影响。针对运动区域中可能含有目标自身投影的问题,根据目标自身和阴影区域的色度变化小而亮度差异大特性,提出利用当前帧与背景亮度和色度比值判断阴影区域,最后利用背景模型,并消除阴影与光照的干扰后,通过当前帧I(x,y)与背景模型B(x,y)的差分获得灰度图像,灰度图像按动态阈值分割提取运动区域。   (4)为了快速准确地对运动人体进行检测,提出了一种采用扩展梯度方向直方图作为特征的运动人体检测方法。该方法首先将人体外观特征,如:人体部位的相对位置关系、对称特征,梯度密度等与梯度方向直方图相结合,提高HOG特征的判别能力,然后对特征进行空间扩展,扩大对人体目标全局梯度特征的描述,使用直方图相似性和Fisher准则来衡量所有定义特征的分辨能力,然后选择一些具有强分辨能力的特征来表征运动人体;从目标和背景中获得的经过筛选的特征用于训练支持向量机分类器。针对以梯度方向直方图作为人体特征的运动人体检测存在向量维数较大、检测时间较长的问题,提出基于人体部位划分的运动人体检测方法,分别在头部及四肢等6个重点区域计算梯度方向直方图,有效地减少了向量维数。实验结果表明,该方法在检测率基本不变的情况下提高了检测速度。
其他文献
本文主要以乙烯装置碳二加氢反应器先进控制项目为背景。碳二加氢反应器是乙烯生产流程中的重要设备,其乙炔转化率和加氢选择性直接影响乙烯产品的质量和产量。但目前该厂的碳
仿生机器鱼作为一种新型的水下机器人,具有良好的机动性和游动效率,应用前景广阔。然而在仿生机器鱼上应用视觉系统却面临着诸多的困难,基于视觉传感的仿生机器鱼目标跟随控制更
面部特征识别和头部姿态估计可根据图像提供用户情绪状态、视线方向、操作意图等大量隐含信息,在心理分析和人机交互等领域应用前景广阔。人脸关键点标记作为面部图像分析中的
由于操作员功能状态(OFS,Operator Functional State)一般与操作员的心理负荷和认知状态紧密相关,这些功能状态很难量化,所以OFS定量研究工作较少。而OFS的精确估计却是自适应辅
早期表格型增强学习算法难以解决具有大规模或连续状态空间的优化决策问题,这极大限制了增强学习的应用推广。近年来,用于求解大规模或连续状态空间问题的值函数逼近方法成为
随着计算机、通信、网络、控制等技术的发展,在网络平台上构筑而成的网络控制系统(Networked Control System,NCS)已经成为自动化领域研究的热点。网络控制系统是一种通过网络
时间序列数据挖掘是数据挖掘领域中的一个重要的研究课题,有其自身的特点和难点。粗糙集理论作为一种强有力的数据分析和知识获取工具,正被越来越多的学者尝试应用到时间序列数
近年来,随着智能优化,智能计算的发展,混合进化算法以其全局搜索能力强、算法性能高等优点受到越来越多学者的关注。本文首先对混合进化算法的原理、机制、算法流程、框架及应用
针对动态环境下机器人路径规划研究更具有实际意义,本文利用粒子群优化算法(PSO)与人工势场法(APF)的混合优化策略,通过在栅格地图中实时动态更新环境信息,实现了动态环境中的路
位标器是一种应用于导引头上的两轴框架式天线稳定平台,其作用是实现天线对目标回波信号的稳定跟踪,保证导引头能够实时截获目标。随着导弹武器整体性能的不断提高,位标器稳