【摘 要】
:
著名的Bishop-Phelps定理是说每个Banach空间的范数可达泛函在对偶空间中总是稠密的.而Bishop-Phelps-Bollobas性质的研究主要针对线性算子的范数可达性及其量化指标,它是泛函分析,尤其是Banach空间理论和Banach空间几何的一个非常活跃的领域.本学位论文旨在研究从Banach空间X到C(K)的Asplund算子的Bishop-Phelps-Bollobas定理.
论文部分内容阅读
著名的Bishop-Phelps定理是说每个Banach空间的范数可达泛函在对偶空间中总是稠密的.而Bishop-Phelps-Bollobas性质的研究主要针对线性算子的范数可达性及其量化指标,它是泛函分析,尤其是Banach空间理论和Banach空间几何的一个非常活跃的领域.本学位论文旨在研究从Banach空间X到C(K)的Asplund算子的Bishop-Phelps-Bollobas定理.为此,我们首先建立一系列关于Asplund算子的特征定理,例如,通过凸函数的Fréchet可微性来刻画Asplund算子,强Radon-Nikodym算子的对偶算子等等,从而将C(K)-值的Asplund算子的Bishop-Phelps-Bollobas定理参数精细化、最优化并且得到定义在l1上的强Radon-Nikodym算子的对偶Bishop-Phelps-Bollobas定理.在文章中我们引入了下面三个概念:广义的Fréchet可微算子,i.e.p(x)=‖Tx‖在X上的Fréchet-可微点是一个稠密的Gδ集;强Radon-Nikodym算子与w*-Asplund算子.我们证明了 T ∈ L(X,Y)为Asplund算子当且仅当对Y上每一个连续凸泛函f,fΟT在X上的Frechét点是X上的一个稠密的Gδ集;以及T∈L(X,Y)为Asplund算子当且仅当T*为强Radon-Nikodym算子;T为强Radon-Nikodym算子当且仅当T*为w*-Asplund算子.运用这些性质并且结合Br?ndsted-Rockafellar定理,我们得到以下定理:假定X为Banach空间,T:X→C(K)为 Asplund 算子满足 ‖T‖=1,以及对x0 ∈SX,ε>0,满足‖T(x0)‖>1-(ε2)/2。则存在xε∈Sx以及一个范数为1的Asplund算子S:X→ C(K)使得‖S(xε)‖=1,‖x0-xε‖<ε,‖T-S‖<ε.利用这个定理,我们更进一步得到定义在l1上的强Radon-Nikodym算子的对偶Bishop-Phelps-Bollobas定理.假定Y为一个Banach空间,T:l1→Y为范数为1的强Radon-Nikodym算子,以及y0*∈SY*,ε≥ 0满足‖T*(y0*)‖>1-(ε2)/2,则存在yε*∈SY*,xε ∈(±en),yε ∈ SY 以及一个范数为 1 的强 Radon-Nikodym算子S:l1→Y使得ⅰ)‖S(xε)‖=1;ⅱ)S(xε)=yε;ⅲ)‖T-S‖<ε;ⅳ)‖S*(yε*)‖=〈yε*,yε〉=1;ⅴ)‖y0*-yε*‖<ε 以及 ⅵ)‖T*-S*‖<ε,其中(en)表示l1的标准单位向量基.
其他文献
近年来,随着大学治理改革的深入推进,人们对大学治理改革的关注点逐渐深入到大学有效治理这一问题上来,而大学有效治理作为大学治理的理想目标状态,其实践水平实际上取决于大学有效治理合法性基础的累积程度,其合法性基础的累积程度越高,愈能彰显大学治理的实践水平,愈能促进大学治理的良法善治实践。因此,无论是从大学有效治理的理论逻辑出发,还是从大学有效治理的实践需求出发,大学有效治理的合法性问题始终是大学有效治
非紧性测度的研究已经有九十年的历史.它在非线性分析的诸多领域,包括不动点定理、算子谱理论、积分方程、常微分方程、偏微分方程、Banach空间几何、分数阶微分方程及最优化理论等,都有着重要的应用.另一方面,由于理论工具的缺乏,非紧性测度在理论上的发展并不尽如人意,无论是从深度还是广度上都滞后于应用对它的需求.究其原因,一直以来非紧性测度在理论上与其它数学分支有机结合的桥梁没有建立起来,因此其它数学分
在形式概念分析(FCA)中,知识约简是其核心研究问题之一。约简的目的是使知识表达简化,使其具有更大的泛化价值和意义。而规则提取是获取知识的主要方式之一,以提高决策质量。FCA已在多个领域得到成功的应用,比如决策分析、信息检索、中医药分析等。随着应用场景的不断扩大,FCA的研究需要适应实际应用的需求,为不同类型的应用快速提供简化且更有用的知识,以降低分析决策的难度。基于此,本文结合粒计算对(模糊)形
关于二维经典的Navier-Stokes方程及Euler方程的稳定性结果已有很多研究成果.但是对于仅有垂直或水平耗散的二维Navier-Stokes方程或仅有部分阻尼的二维Euler方程的稳定性问题(靠近平凡解)仍是未知的.为此,本文主要研究具有部分耗散的不可压缩Boussinesq/MHD方程组解的稳定性和衰减性质,从而揭示浮力或磁场对流体稳定性的影响.全文共分为四章:第一章,我们首先回顾不可压
Finsler几何是没有二次型限制的Riemann几何,是比Riemann几何更为广泛的一类几何。由于芬斯勒几何在理论物理、生物数学和信息科学等学科中有广泛应用,Finsler几何日益受到越来越多专家们的关注和研究。2002年,邓少强和侯自新两位将Riemann流形的Myers-Steenrod定理推广到Finsler流形的情形,证明了 Finsler流形的等距群是个李群,开启了运用李群理论研究齐
本博士学位论文研究从R(X)到R(Y)和C(X)到C(Y)的等距映射的Mazur-U lam定理,其中,X,Y是Banach空间,R(X)和C(X)分别表示由X的所有非空紧和非空有界闭凸集构成的集族赋予Hausdorff度量构成的度量空间.著名的Mazur-Ulam(1932)定理是说“Banach空间之间的等距满射一定是仿射的”,它深刻的揭示了“保度量”的映射必须是“保线性性”的.以此为出发点,
Navier-Stokes方程描述粘性牛顿流体的运动状态,在流体力学,航天航空,天体物理,大气洋流等领域具有重要的应用背景,一直是偏微分方程理论与数值计算的热点核心问题.自从1934年Leray关于不可压缩Navier-Stokes方程的开创性成果以来,可压缩/不可压缩Navier-Stokes方程已有十分丰富的数学理论研究成果,但由于混合型方程的数学结构及强非线性的影响,很多基本且重要的问题迄今
本文旨在从理论和数值分析两方面对若干反问题和正则化方法进行研究。第一章,绪论概述了反问题,特别是分数阶偏微分方程相关的反问题的发展和研究现状。然后陈述本文的研究动机和主要内容。第二章,我们研究了一类时间分数阶波动方程反向问题的数值解法。主要思想是首先将该不适定的反问题转化成一个带权的正规算子方程,再通过经典的Landweber迭代过程导出正则化格式。我们给出了两种分数正则化格式,其可以看成是经典的
非线性偏微分方程的高效数值方法研究一直是计算数学领域的热点之一.本论文旨在深入系统的研究几类具有重要物理背景的非线性发展型偏微分方程(组),诸如非线性Benjamin-Bona-Mahoney(BBM)方程、非线性抛物方程、非线性Poisson-Nernst-Planck(PNP)方程、非线性热离子方程(包括时间整数阶、时间分数阶类型)的有限元方法.对上述方程(组)分别选择了合适的有限单元并构造了
本学位论文主要研究了 Brinkman-Forchheimer方程,非牛顿微极流方程组和MHD方程组,我们从无穷维动力系统的角度对这几类具有能量耗散的非线偏微分方程进行了系统研究,并得到了一系列有趣而新颖的结果,提高了对这些方程的了解.在第一章中,我们主要介绍了一些无穷维动力系统的相关研究背景,以及我们研究问题的研究现状和本文的主要工作.在第二章中,主要介绍了一些本文所要用到的预备知识以及一些符号