论文部分内容阅读
本文制备了聚茜素绿-碳纳米管、镍-聚茜素绿、铜-聚茜素绿、氢氧化铜-萘酚四种无机有机材料,并构置了相应的电化学传感器,分别建立了检测羟胺、米吐尔、葡萄糖、氨基脲的方法。主要研究内容如下:
1.通过电化学聚合法将茜素绿聚合在碳纳米管修饰的电极表面,构置基于pAG-MCNT的羟胺电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立一种检测羟胺的方法。电化学研究结果表明,pAG-MCNT/CPE在pH7磷酸盐缓冲液中对羟胺的检测表现了较好的电化学性能,线性范围为1~1400μmol·L-1,检测限为0.33μmol·L-1,灵敏度为0.0274μA·μmol·L-1。
2.将茜素绿聚合在电极表面,在聚茜素绿表面采用恒电位法沉积镍,构置基于Ni-pAG的米吐尔电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测米吐尔的方法。米吐尔在该传感器上的线性范围为0.2~100μmol·L-1,检测限为0.067μmol·L-1,灵敏度为0.145μA·μmol·L-1。
3.将茜素绿聚合在电极表面,再用恒电位法将铜沉积在聚茜素绿表面,构置基于Cu-pAG的葡萄糖电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测葡萄糖的方法。葡萄糖在该传感器上的线性范围为0.8~1200μmol·L-1,检测限为0.267μmol·L-1。此外,Cu-pAG/CPE成功用于检测血清中葡萄糖,回收率为99.8%~102%。
4.通过化学沉淀法制备出CuHCF,再以CuHCF为原料制备了Cu(OH)2,将Cu(OH)2分散在Nafion水溶液中。构置基于Cu(OH)2-Nafion的氨基脲电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测氨基脲的方法。电化学研究结果表明,氨基脲在该传感器上的线性范围为1~1400μmol·L-1,检测限为0.21μmol·L-1。
1.通过电化学聚合法将茜素绿聚合在碳纳米管修饰的电极表面,构置基于pAG-MCNT的羟胺电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立一种检测羟胺的方法。电化学研究结果表明,pAG-MCNT/CPE在pH7磷酸盐缓冲液中对羟胺的检测表现了较好的电化学性能,线性范围为1~1400μmol·L-1,检测限为0.33μmol·L-1,灵敏度为0.0274μA·μmol·L-1。
2.将茜素绿聚合在电极表面,在聚茜素绿表面采用恒电位法沉积镍,构置基于Ni-pAG的米吐尔电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测米吐尔的方法。米吐尔在该传感器上的线性范围为0.2~100μmol·L-1,检测限为0.067μmol·L-1,灵敏度为0.145μA·μmol·L-1。
3.将茜素绿聚合在电极表面,再用恒电位法将铜沉积在聚茜素绿表面,构置基于Cu-pAG的葡萄糖电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测葡萄糖的方法。葡萄糖在该传感器上的线性范围为0.8~1200μmol·L-1,检测限为0.267μmol·L-1。此外,Cu-pAG/CPE成功用于检测血清中葡萄糖,回收率为99.8%~102%。
4.通过化学沉淀法制备出CuHCF,再以CuHCF为原料制备了Cu(OH)2,将Cu(OH)2分散在Nafion水溶液中。构置基于Cu(OH)2-Nafion的氨基脲电化学传感器,表征了该电化学传感器界面的形貌,考察了传感器响应性能,建立了一种检测氨基脲的方法。电化学研究结果表明,氨基脲在该传感器上的线性范围为1~1400μmol·L-1,检测限为0.21μmol·L-1。