求解鞍点问题的PSD方法及一类特殊非线性方程组的N-PSD方法的收敛性

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:ok2ejoo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我们知道,求解线性方程组Ax=b,通常有直接法与迭代法两类方法.线性方程组的直接法,用于阶数不太高的的线性方程组效果较好,如果没有舍入误差,通过有限步操作,可以产生完全精确的解.x.实际工作中有许多问题的求解最终可以归结为求解一个或一些大型稀疏矩阵的线性方程组问题的解,而迭代法是用来求解大型稀疏线性方程组问题的一种很重要的方法.本文主要研究了求解大型稀疏鞍点问题的PSD迭代法及求解一类特殊的非线性方程组的N-PSD迭代法的收敛性问题.本文在第二章当中利用Euans提出的PSD迭代法来求解大型稀疏鞍点问题.大型稀疏鞍点问题的求解在很多领域中都出现过,如约束最优化、流体力学、最小二乘等问题当中,因此针对鞍点问题系数矩阵的特殊结构和特殊性质,去研究有效的迭代方法和相应的收敛理论,就有非常重要的理论意义和很高的应用价值.PSD方法是Euans于1980年提出的为解决大型线性方程组问题的一种迭代方法,后来有学者将之推广应用到最小二乘问题当中,本文就是在他们共同的启发下,考虑用PSD方法来解决鞍点问题.这种方法的建立是基于对方程组系数矩阵的分解、预处理因子Q的引入以及PSD迭代格式的运用,文中推导出了PSD方法的迭代矩阵SΓ,ω,α的特征值λ和矩阵J=Q’BTA’B的特征值μ之间所满足的基本关系式,并基于该基本式得到了PSD方法收敛的充要条件,随后又着重讨论了τ=1以及ω=1时,PSD方法收敛的充要条件,并在合理的假设下得到了PSD方法收敛的最优参数和最优谱半径.最后给出了数值例子对定理的正确性和有效性进行了验证.其次,本文在第三章当中讨论了求解一类特殊的非线性方程组问题的N-PSD方法的收敛性问题.牛顿法是求解非线性方程组问题的一种非常有效的方法.本文将牛顿方法和PSD方法结合起来形成了求解非线性方程组问题的双层迭代法N-PSD方法,并在合理的假设下得到了其收敛性定理.最后通过数值例子验证了其有效性和可行性.
其他文献
本文主要研究两类反应扩散方程平衡态正解的存在性和正解的性质,本文的主要内容如下:(1)讨论了一类带有非单调反应项的捕食-食饵模型:((?)u)/((?)t)-Δu=u(a-u-bve-mu),x∈Ωt>0. ((?)v)/((?)t)-Δu=v(c-u+due-mu).x∈Ω, t>0. 1((?)u)/((?)n)+u=0,x∈(?)Ω, t>0. 2((?)v)/((?)n)+v=0,x∈(?
作为一种比较理想的时频分析工具,小波分析是在Fourier分析的基础上产生和发展起来的.它有效的弥补了Fourier分析的不足,被看作是多元调和分析半个世纪以来的工作结晶.因其具有良好的自适应性以及“数学显微镜”特性,小波分析被广泛地应用于信号与图像处理、智能计算、量子理论、网络信息安全等众多领域.目前,有关小波分析的理论研究在进一步的深入,其应用范围也在不断扩大.小波变换是一种时频局部化的工具,
量子控制作为一个全新的学科领域正在蓬勃发展,作为近代科学前沿中最为活跃的边缘学科领域之一,它涉及量子力学、光学、化学、控制论、信息科学等众多领域。随着激光、观测、纳米等技术的迅速发展,进行实验研究的量子控制手段也在不断的改进和增加,这必将促进量子控制论的发展,促进与量子力学系统相关联的化学反应、生物细胞、量子信息、纳米材料等领域的量子控制研究的发展。随着超快脉冲的迅速发展,激光脉冲整形技术取得了突
自发参量下转换(SPDC)是目前制备高度相关光子对的最为成熟、应用最广泛的一种方法。正因为其产生的纠缠光子对在时间、空间、频率、偏振等方面的高度相干性,而被广泛应用于量子信息,光通讯,激光技术,光学计量等技术领域,但是由于泵浦光和所产生的信号光、休闲光场之间要满足相位匹配,所以通常情况下转换效率较低,解决这一问题的传统方法是采用双折射相位匹配技术(BPM),但是这种方法受到偏振方向和波矢方向的限制
算子数值域,算子矩阵是近年来算子理论中比较活跃的研究课题.对它们的研究涉及到诸如代数学,矩阵理论以及量子计算等多个学科分支.本文主要研究算子理论在算子数值域中的应用.研究方法上着重使用算子分块技巧,研究内容涉及到数值域的函数演算及幂等算子的数值域两个方面.全文共分三章,各章主要内容如下:第一章主要介绍本文中要用到的符号,定义和后两章需要用到的一些概念和结论.第二章通过引入解析函数的概念刻画了复Hi
人类对单分子膜的认识过程,如同人们在浩瀚的大海上进行长期的航海实践和探索的过程。20世纪30年代,Langmuir-Blodgett膜(简称LB膜)技术作为一种新型的研究方法掀起了单分子膜研究的第一个高潮。自此以后,LB膜倍受各国科研人员的青睐,也成为了当前膜与细胞生物物理研究领域的前沿热点问题。为了加强LB膜与生命活动之间的联系,加深对LB膜性能的研究以及增进LB膜在各个领域中的研究价值,我们让
微分方程解的周期性、稳定性和持久性,揭示了动力系统的长期行为,在生态学里有着广泛应用,对于保持生态平衡,挽救濒临灭绝的生物种群具有非常重要的实际意义.一直以来,用微分方程来描述生物规律现象,具有很强实际背景的新课题也随之而形成.本文讨论了三类生态模型的Hopf分支周期解、稳定性和持久性,其中包括:一类广义Logistic模型的Hopf分支周期解、同类相食率对捕食与被捕食模型稳定性的影响及N一种群反
Domain理论为计算机程序设计语言的指称语义学奠定了数学基础,属于格论、拓扑学、范畴论及理论计算机科学的交叉领域,所以受到众多数学家和理论计算机科学家的关注,因此Domain理论及其推广研究引起诸多学者的兴趣.到目前为止,一些学者对准连续Domain、半连续Domain、拟连续Domain、sl-Domain和Z-连续偏序集作了较为深入的研究.在此基础上,本文讨论了局部半连续格、半连续格的性质以
Domain理论具有理论计算机科学与纯粹数学的双重研究背景.在一个经典偏序集中,仅仅能够表达元素之间的定性信息,而没有实际计算所需要的定量信息,从而不能表现出元素含有可供计算的信息量的多少.模糊偏序集和量化Domain的引入则弥补了这一不足.子集系统的引入为Domain理论的研究开辟了新的空间.本文将子集系统的概念推广到模糊的情形,建立了模糊Z-子集系统,从而建立了模糊Z-Domain等相关概念.
神经元放电的信息蕴含在动作电位产生的频率和延迟时间中,相关的频率编码和时间编码理论也在不断发展。早期神经编码理论认为:动作电位的发放频率和生理信号刺激的强度有正比关系,但是,之后通过鲨鱼温度感受器的研究,揭示了神经放电的频率和节律对温度调节都有关系。最近在神经编码的研究中,通过研究对家兔减压神经放电时间序列编码信息和血压变化关系,发现了动作电位的节律和血压的变化之间有较好的对应关系,血压信号通过调