论文部分内容阅读
随着经济的发展和城市化的推进,共享单车逐渐成为一种广泛使用的交通工具。在共享单车大行其道的同时,人们也愈发关注其安全隐患问题。如何维持共享单车的动态平衡将成为提升其安全性能的一个关键。因此,本文致力于研究机器人自行车的动态平衡实现,主要工作包括机器人自行车的建模控制理论研究和机器人自行车系统开发,并利用该系统进行实验,通过实验数据评估实现效果。在设计系统之前,针对机器人自行车动力学建模与控制理论进行研究。从标准的机器人自行车组成结构开始介绍动力学建模方面的理论,随后在坐标系下对机器人自行车进行运动分析,并描述出无约束状态下机器人自行车的运动学关系。再根据这些运动学关系,列出机器人自行车前后轮接触地面之后的完整和非完整约束方程。利用数学方法消去约束方程和拉格朗日乘积因子,即可获得欧拉-拉格朗日动力学方程。完成动力学建模后,再利用该模型进行机器人自行车动态平衡的研究。为了实现动态平衡控制的目标,本文将在介绍平衡控制方面的理论的基础上,根据动力学方程进行控制器设计。并在仿真软件下对控制算法做仿真实验,通过观察仿真结果进行总结评估。这就是建模与控制理论方面的研究工作。通过前文的理论研究获得机器人自行车的控制算法之后,就进入机器人自行车系统的开发阶段。主要涉及以下几个步骤:首先,进行机器人自行车的硬件系统构建工作。系统的车架使用机械制图CAD设计,再由生产车间加工而成。该车架针对自动平衡车辆的需求,有别于普通自行车。车架构建成功以后,再安装各种电子器件,包括带编码器的电机、测试转弯扭矩的传感器以及测试车身倾斜角的陀螺仪等。完成器件安装之后,进行电路设计工作,并完成电路连接。其次,在完成系统的硬件设计之后,就进入软件开发阶段。机器人自行车的硬件系统是通过STM32主控芯片实现控制的。因此,需要在KEIL下进行STM32软件开发,包括硬件操作程序的开发和平衡控制算法编程。其中,平衡控制算法编程是根据前面的理论研究结果进行的。软件开发主要是围绕着硬件操作和平衡控制这两大核心展开,整套软件都是用C语言编写的。最后,进行电子方向盘的开发。方向盘不仅有控制功能,还具有辅助系统主控芯片计算转向角的功能。方向盘的开发工作是使用Altium-designer设计出方向盘控制电路板的相关设计图之后,根据设计图打样出印制电路板,并完成电子元器件焊接。另外,还要开发电路板的配套软件,开发的过程是在KEIL环境下进行。这个软件引入了UCOS系统,开发工作包括一些硬件初始化和操作系统的任务创建等编程工作。完成系统的开发工作之后,再利用这个机器人自行车系统做实验,并分析实验测试结果,评估系统的动态平衡性能效果。因为本系统属于大型的机器人自行车,为了降低人员风险,本项目的实验平台还配置了遥控器和接收装置,作为远程控制工具。