论文部分内容阅读
在过去的10-20年间,宇宙学从一门对观测数据非常渴望的学科逐渐成为了一门依靠观测数据来推动其发展的学科。对许多关键的参数(例如,物质密度分数Ωm,0,宇宙膨胀的减速因子q0)的测量精度可以控制在10%以内。在1998年之前,人们一直认为宇宙膨胀的速度是减小的,令人感到非常惊奇的是,Ia型超新星的观测结果却表明现今的宇宙正经历着一个加速膨胀的过程。基于这样的观测事实,人们推断宇宙中存在一种能产生负压强的物质能量组分,即暗能量,并得出其占到宇宙总物质能量的2/3左右。理解和认识暗能量的性质是现代物理学所面临的最大挑战之一。为了避开理解暗能量的奇异特性所带来的挑战,人们认为现有的爱因斯坦引力理论在宇宙的尺度上可能不再成立,而是需要对其进行适当的修正,这些理论可以在不引入暗能量的情况下解释宇宙的加速膨胀。迄今为止,大量的宇宙学模型被建立。同时,不同的天文观测所得到的数据样本越来越大,精度越来越高。这些数据将为我们揭开暗能量的神秘面纱,或者理解大尺度时的引力规律提供有力依据。因此,将理论模型和实验观测结果联系起来是非常必要的。本文前一部分讨论了最新的观测数据对一些主流的宇宙学模型的限制。我们发现,真空暗能量模型(ACDM)还是最被观测(SNLS3la型超新星,宙微波背景辐射和重子声学振荡的数据,以及哈勃参数的数据)所支持的候选者。然而,当只考虑SNLS3la型超新星数据时,DGP(膜世界理论)最被实验观测所支持。其次,借助于暗能量状态方程参数化的理论,我们利用观测数据讨论了宇宙膨胀加速度的演化,发现宇宙加速度有可能在过去的某时刻开始减小,甚至我们今天的宇宙已经进入了减速膨胀的阶段。但这些结果一定程度上依赖于状态方程的参数化形式和观测数据的选择。最后,我们用来自于超新星和星系团的观测数据,对宇宙学中联系两种重要距离的关系距离对偶关系,进行了不依赖宇宙学模型的检测,发现这个关系在实际观测中存在一定程度的偏离,且星系团样本的选择和X-射线的Chandra校准方法对检测结果有一定的影响。除此之外,我们利用距离对偶关系讨论了宇宙不透明度,发现现今观测还是支持一个完全透明的宇宙,并且支持宇宙学常数A>0的情况。