【摘 要】
:
精子发生过程包括三个阶段,即精原干细胞的自我更新与分化、精母细胞的减数分裂和单倍体圆形精细胞的变形。这一过程受到基因表达的精密调控。条件性敲除胚胎期生殖细胞内的H3K9me2去甲基化酶基因Jmjd1a和Jmjd1b导致基因表达紊乱和精子发生受损。因此,探究组蛋白甲基化修饰对精原干细胞增殖与分化的调控作用机制,对于雄性不育的诊治具有一定的指导意义。组蛋白甲基转移酶SETDB1能够催化组蛋白H3K9甲
【基金项目】
:
国家自然科学基金(编号:31772605);
论文部分内容阅读
精子发生过程包括三个阶段,即精原干细胞的自我更新与分化、精母细胞的减数分裂和单倍体圆形精细胞的变形。这一过程受到基因表达的精密调控。条件性敲除胚胎期生殖细胞内的H3K9me2去甲基化酶基因Jmjd1a和Jmjd1b导致基因表达紊乱和精子发生受损。因此,探究组蛋白甲基化修饰对精原干细胞增殖与分化的调控作用机制,对于雄性不育的诊治具有一定的指导意义。组蛋白甲基转移酶SETDB1能够催化组蛋白H3K9甲基化,在干细胞多能性维持,神经细胞分化等过程中发挥重要作用。然而,SETDB1调控精原干细胞增殖与分化的确切机制仍不清楚。因此,本研究利用细胞免疫荧光,染色质免疫共沉淀,RNA-seq,ATAC-seq和Ch IP-seq等方法探究SETDB1对精原干细胞增殖与分化的调控作用机制。主要结果如下:(1)Ed U和细胞流式检测结果显示Setdb1-KD导致小鼠精原干细胞增殖速率降低,细胞周期阻滞在S期。细胞免疫荧光与TUNEL检测结果表明,Setdb1敲低诱导细胞DNA断裂和凋亡水平升高。这表明Setdb1-KD阻碍了精原干细胞增殖,导致细胞凋亡。(2)Setdb1-KD导致精原干细胞NADPH氧化酶4(NOX4)及其配体P22PHOX表达量上升,活性氧水平升高。挽救试验发现,相对于Setdb1敲低组,Setdb1和Nox4同时敲低组的细胞内活性氧含量较低,细胞凋亡增加和增殖速率减慢的表型得到部分挽救。此外,使用活性氧清除剂褪黑色素直接清除细胞内的活性氧,也可以在一定程度上抑制Setdb1-KD诱导的细胞凋亡。这表明NOX4上调介导的活性氧水平升高参与到Setdb1敲低诱导的细胞凋亡和增殖速率减慢。(3)Setdb1-KD导致细胞内p-P38和p-JNK水平升高、FOXO4活化,这表明Setdb1-KD激活了细胞内活性氧下游p38/JNK-FOXO4信号通路。(4)SETDB1-Ch IP-qPCR和H3K9me3-Ch IP-qPCR结果显示,Nox4基因启动子区域几乎没有SETDB1和H3K9me3的富集,说明SETDB1对Nox4的调控不是直接的,有可能是由于Setdb1-KD导致Nox4基因临近处的转座子激活,从而使得NOX4表达量升高。(5)在小鼠精原细胞内,Ythdf2-KO导致SETDB1与H3K9me3修饰水平降低。蛋白质免疫共沉淀结果表明,SETDB1与γH2AX之间相互作用。当发生DNA损伤时,Setdb1-sh RNA介导的Setdb1-KD导致精原细胞的克隆形成能力降低,细胞凋亡增加,γH2AX阳性细胞数增加。同时,当发生DNA损伤时,Ythdf2-KO的精原细胞出现了与Setdb1-KD类似的表型。而且体内试验结果发现,当用DNA损伤药物etoposide诱导发生DNA损伤时,Ythdf2 c KO小鼠(Stra8-Cre,Ythdf2loxp/loxp)睾丸组织平均每个曲细精管内的γH2AX阳性细胞数和c PARP阳性细胞数均高于对照组。这表明在小鼠精原细胞,YTHDF2能够调控Setdb1的表达,且它们均参与DNA损伤应答反应。(6)挽救试验发现,当发生DNA损伤时,在Ythdf2-KO的精原细胞过表达Setdb1,部分挽救了Ythdf2-KO介导的细胞克隆形成能力降低的表型。此外,RNA-seq分析表明,在DNA损伤条件下,SETDB1过表达使得Ythdf2-KO组中部分促凋亡基因转录水平降低。这表明Ythdf2-KO诱导的精原细胞DNA损伤敏感性增加部分是由于SETDB1下调导致的。(7)借助流式细胞术和STA-PUT分选猪精原干细胞和分化精原细胞,结合ATAC-seq,Ch IP-seq和RNA-seq解析猪精原干细胞分化过程中SETDB1,H3K9me3修饰以及染色质可及性变化。RNA-seq分析结果表明,精原干细胞分化过程中有684个基因表达上调,702个基因表达下调。而且,在分化过程中,促分化相关基因c-Kit启动子处的SETDB1和H3K9me3修饰富集水平降低,染色质可及性升高。因此,推测SETDB1可能通过H3K9me3修饰调控促分化相关基因表达,从而调控精原干细胞分化。综上所述,本研究发现SETDB1通过调控NADPH氧化酶NOX4的表达和细胞内的活性氧水平,调控小鼠精原干细胞的存活;Ythdf2-KO导致SETDB1下调,从而诱导DNA损伤敏感性增加;SETDB1通过H3K9me3修饰调控猪精原干细胞分化过程中染色质可及性,引起分化相关基因表达变化,从而调控精原干细胞的分化。本研究为组蛋白甲基化修饰对雄性精子发生的调控机制提供理论参考。
其他文献
鲤春病毒血症病毒(Spring viremia of carp virus,SVCV)诱发的鲤春病毒血症(Spring viremia of carp,SVC)是一种严重危害鲤科鱼类的水生动物病毒性疾病,具有发病急、传染性强、致死率高等特点,给水产养殖业造成巨大的经济损失。目前,由于疫苗免疫防控的缺乏和局限,药物防控仍然是病害防控的有效手段。医用抗病毒药物盐酸吗啉胍、利巴韦林等被禁用以来,抗病毒药
实体肿瘤并不是单独存在的一团癌细胞,而是嵌入于一个由浸润和驻留宿主细胞组成的肿瘤微环境中。肿瘤微环境并不是沉默的旁观者,而且是癌症进展的积极推动者,并且是肿瘤治疗的关键靶点。其中最引人注目的是免疫检查点阻断治疗,它通过恢复肿瘤浸润免疫细胞的抗肿瘤免疫力,在多种晚期癌症中产生了持久甚至治愈的治疗效果。然而,仅有少部分的患者能从中获益。因而需要新的技术和方法来阐明肿瘤与肿瘤微环境相互作用,以发现免疫检
促卵泡激素(FSH)是一种糖蛋白类激素,它是由FSHα亚基和FSHβ亚基通过非共价键组成的异源二聚体蛋白。解离分开的FSHα亚基和FSHβ亚基都不具备生物学功能,只有两个亚基正确的组装在一起才具备生物学功能。在女性体内,FSH的主要作用是刺激卵泡的发育、排卵和子宫内膜的生长。在男性体内,FSH的主要作用是刺激精子的产生和次级精母细胞的发育,并通过与促黄体生成素(LH)及雄激素的协同作用来刺激精子发
?(Hemiculter leucisculus)和贝氏?(Hemiculter bleekeri)是我国比较常见的小型土著鱼类,它们均隶属于鲤科(Cyprinidae)、鲌亚科(Culterinae)中的?属(Hemiculter)。?和贝氏?具有突出的生境适应性和较高的入侵潜力,是我国许多水体中的优势种,它们如何适应高度异质性的环境并成为优势种,是值得关注的。本研究通过几何形态学的方法获得了1
哺乳动物有三种不同类型的肌肉组织,包括心肌、骨骼肌和平滑肌。骨骼肌约占机体总质量的40%,在运动和代谢方面起着关键作用。脊椎动物的骨骼肌起源于胚胎发育时期的体节。肌肉发生是一个复杂的过程,涉及多个基因、信号通路和网络调控。例如,MYOG regulatory transcription factors(MRFs)对骨骼肌发育的调控非常重要。MRFs是基本螺旋-环-螺旋(bHLH)家族的成员,包括M
牛奶和羊奶等乳制品富含蛋白质,为人体补充多种必需氨基酸和生物活性肽。乳蛋白分为酪蛋白和乳清蛋白两大类,其中酪蛋白细分为αS1-酪蛋白(CSN1S1)、αS2-酪蛋白(CSN1S2)、β-酪蛋白(CSN2)和κ-酪蛋白(CSN3)四种。乳蛋白营养价值高,但其引起的人体过敏问题不容忽视。相较于其他乳蛋白成分,αS1-酪蛋白容易引起人体过敏。羊奶中的αS1-酪蛋白含量远低于牛奶,是羊奶不易过敏的主要因素
中国既是猪肉生产大国也是猪肉消费大国。随着人们生活水平的提高,猪肉作为日常食用肉类中最多的一种,其品质受到越来越多的关注。肌内脂肪(Intramuscualr Fat,IMF)是影响猪肉品质的关键因素之一,它的含量影响着猪肉的多汁性、风味和嫩度。中国地方品种猪的肉质优于引进品种,原因之一便是其较高的肌内脂肪含量。因此,适当的提高肌内脂肪含量是改善肉质一条有效途径。脂肪的沉积包含脂肪细胞的增殖、分化
脊椎动物的骨骼肌大部分来源于轴旁中胚层体节,先后经历增生和肥大过程,出生前骨骼肌细胞的数目经增殖分化途径大致已经恒定,出生后主要是肌纤维的肥大增粗以及肌肉卫星细胞响应刺激重新进入细胞周期修复受损肌纤维。骨骼肌发育是一个极其复杂的过程,受到包括生肌调节因子(MRF)和肌细胞增强因子2(MEF2)家族在内的转录因子的精确调控。研究表明非编码RNA也广泛参与骨骼肌的发育,其中涉及微小RNA(miRNA)
驯化是迄今为止人类进行的时间最久、规模最大的遗传学实验,针对从野生到家养动物的遗传基础的详细解析将有助于检验已有的遗传学理论、解析表型与基因型的复杂关联以及发现新的遗传学现象,进而服务于现代农业动物精准化的分子育种与遗传改良。同时,对动物驯化与人工选择中表型变异的遗传基础的研究,不仅可以帮助人们了解野生动物是如何在人类生存环境中生存、繁殖以及被人类的开发利用的,还可以帮助人们认识人类的社会发展。在
纤维素作为农作物秸秆的主要成分是限制秸秆饲料化利用的关键因素,挖掘高效纤维素酶是提高秸秆利用率的有效方法。植食性动物胃肠道微生物是纤维素酶的重要筛选来源,目前的研究主要集中在反刍动物瘤胃微生物,对其它纤维素降解能力强的动物胃肠道微生物研究较少,而且通过传统的微生物体外培养方法无法获得不可培养微生物所产纤维素酶。因此,本研究避开传统的微生物培养方法,利用宏基因组测序技术研究三种植食性动物胃肠道内容物