算子代数的局部(α,β)导子

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:huanghui0123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究算子代数的局部(a,β)导子与(α,β)导子的之间的关系.全文共分五节.第一节是引言和预备知识.第二节证明了矩阵代数Mn(C)到其Banach-双模内的每个局部(α,β)导子都是(a,β)导子,进而也是(α,β)内导子,其中a,β为Mn(C)上的线性映射.第三节证明了交换冯诺依曼代数上的每个有界局部(α,β)导子是(α,β)导子,其中α,β是该交换冯诺依曼代数上的有界线性映射.与此同时,本节还证明了当α,β为保单位元的自同态时,每个冯诺依曼代数到其巴拿赫(?)-双模的任一范数连续的局部(α,β)导子是(α,β)导子,第四节证明了,如果级是作用在复巴拿赫空间X上的标准算子代数且含恒等算子I,则当a,β是可乘线性映射且α=(Ⅰ)=1,β(Ⅰ)=1时,(?)到B(X)内的每个局部(α,β)导子是(α,β)导子.第五节证明了,如果A是AF C*-代数E的一个包含典型masa的子代数,则A到其Banach双模的任意范数连续的局部(α,β)导子是(a,β)导子,其中α,β是可乘线性映射且a(I)=1,β(I)=1.
其他文献
本文共分四节.第一节为本文的引言,主要介绍了椭圆偏微分方程解的水平集凸性问题的研究成果,并引出了本文的主要定理.第二节为本文的预备知识.介绍了曲线和曲面曲率的基本知识,包括曲线曲率的计算和曲面的第一基本形式和第二基本形式,并且给出了判断曲面凸性的方法.接着介绍了水平集,水平集凸性的概念和水平集的曲率矩阵,并给出定理证明过程中所涉及到的定理和引理.第三节和第四节是主要定理的证明.我们选取适当的试验函
近代物理学和应用数学的发展,要求分析和控制客观现象的数学能力向着富有全局性的高、精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科——非线性泛函分析.非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的若干一般性理论和方法.因其能很好的解释自然界中的各种各样的自然现象,在实际生产生活中有很大的应
本文利用临界点理论中的环绕定理、山路引理、极大极小方法等研究了几类二阶哈密顿系统周期解的存在性问题,得到了若干新结果.全文共分五章:第一章简要介绍了问题研究的背景和本文的主要工作.第二章研究了二阶非自治哈密顿系统在局部超二次条件下周期解的存在性问题,利用山路引理和局部环绕定理得到了新的存在性定理,改进了已有的重要结果.第三章研究了二阶非自治哈密顿系统在更一般条件下次调和解的存在性问题,利用鞍点定理
近几年来,环境保护越来越受到政府方面的重视,比如国内多地陆续开始宣传和推行生活垃圾分类,中央领导层更是对垃圾分类作出了重要指示。按理说,垃圾分类应该是一件利国利民的好事,然而这项政策的落实过程却引发了各种各样的社会争议,这使得研究基层政府的垃圾分类治理工作既具有相当的热点性,又具有一定的实践价值。此外,不同于既往基层环境治理个案研究的独特性和区域性特点,垃圾分类整治的普适性意味着基层政府的治理与考
随着科学技术,近代物理学和应用数学的不断发展,各种各样的非线性问题日益涌现.这些非线性问题日益引起了人们的广泛重视,极大的促进了非线性泛函分析问题向着更成熟的方向发展.半正问题和奇异性是近几年来研究的热点问题,许多作者已做过广泛和深入的研究.本文利用锥理论,不动点理论,平移变换知识,研究了非线性微分方程边值问题的正解.本文共分为三章:第一章主要利用拓扑度理论在更广泛的条件下研究了四阶四点边值问题正
本文研究张量三角范畴中的一个余分离上环对象,其余模范畴上有一个预三角测量,它可以用分离的余单子来刻画.全文共分四节.第一节是引言部分.主要介绍单子和余单子的背景知识及论文主要结果.第二节是预备知识.给出三角范畴、预三角范畴、余单子和幂等完备范畴的概念及本文常用的若干引理.第三节给出余单子的分离性概念,证明左伴随函子是分离的当且仅当其对应的余单子是分离的,从而得到有关预三角范畴的一个重要结论:如果存
学位
在金融市场上价格走势存在着多因素相互作用的繁杂性,易变性,也存在着标度不变规律.能够运用分形理论更好表达与刻划市场价格走势,进而准确解读市场价格走势中所富含的信息,及时预测金融市场的剧烈波动,都有着重要的意义.作为尝试与探索,本文构造了一个模拟价格走势的双参数分形,给出了该分形的分维数,盒维数与Hausdorff维数,并研究了该分形的某些结构特性,讨论了分形参数与市场价格波动间的关联性.全文共分三
本文共分四节.第一节为本文的引言.在第二节中,我们先介绍了微分几何学中图形及其凸性的一些基本知识,然后简要叙述了函数凸水平集的概念,推导出了水平集的曲率矩阵.最后,列出了几个有关极大值原理的定理.第三节为主要定理证明之前的准备.基于对相关文章的参考,我们主要为定理的证明完成了一些具体的计算工作,主要的技巧包括重组二阶和三阶导数项以及(?)的一阶导数条件的利用.之后,我们介绍了两个引理.第四节为本文
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题(见[1]):给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y),f(x)·f(y))<δ.是否存在一个同态9:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D. H