论文部分内容阅读
随着计算机、通信和网络技术的发展,数据呈指数级增长,这些数据已经远远超出了人的能力,如何在海量的数据中发现有用的或感兴趣的知识,是一个迫切需要解决的问题。知识发现便应运而生。知识发现是从数据集中抽取和精化的新模式。本文的数据集是基于农业知识背景。期望通过知识发现研究来获取新的农业知识模式或改善传统的农业知识,从而更好地为农业生产服务。本文首先综述了知识发现的发生发展以及知识发现的方法。随之针对农业生产中存在的问题,运用不同知识发现的方法加以解决。本文知识发现的方法有不确定性理论和机器学习方法。不确定性理论主要是粗糙集理论和证据理论;机器学习方法主要是神经网络方法和支持向量机方法。鉴于植物病害诊断涉及的植物属性很多,包括植物的根、茎、叶、花、果,症状纷繁复杂,不同的病害之间的症状且有相似之处,非专业人员有时很难区分。为此本文分别给出基于粗糙集的酥梨病害知识发现系统构建与基于神经网络的酥梨病害分类器设计,解决非专业人员难以根据复杂相似病害症状进行诊断的问题。传统的植物营养诊断方法如DRIS,M-DRIS,DOP,各有所长,在进行诊断时会出现不同的诊断结果,致使用户难以做出决策。证据理论是信息融合技术中一种非常有效的不确定理论方法,根据其证据合成公式可以融合不同的专家知识,为用户做出决策提供良好的途径。本文基于证据理论的优势,构造了营养诊断方法融合模型,对三种诊断方法DRIS、MDRIS、DOP进行融合处理,结果表示该模型是切实可行的。针对现有的作物水分生产函数模型拟合精度低,本文提出基于支持向量回归机的方法拟合作物水分生产函数,并与现有的模型进行比较,拟合结果显示,基于支持向量机的模型拟合明显优于现有模型。通过对已有的不完备信息系统粗集扩展模型进行分析,并针对王国胤的限制容差模型存在条件限制宽松和严格的不足,对其加以改造,提出了改进的α限制容差关系模型,通过实例比较,验证其更具有实用性,在划分容差类时更具合理性有效性。其农业应用有待进一步研究。