渤海油田某井筒蜡沉积实验及预测模型研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:greenboy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文依托于渤海油田J、B油气井实际生产状况,在实验室内模拟进行了井筒蜡沉积冷指实验,探究了不同温度、产量及时间下的J、B井沉积过程(沉积质量、碳数分布)及机理。实验发现:J井沉积包含蜡沉积和胶凝淤积作用,使得J油井壁温高于析蜡点时也会出现沉积、堵管现象;而B井沉积属于典型的蜡沉积过程,但B油品析蜡特性曲线存在两个析蜡高峰,不同产量、井深处的沉积厚度需结合析蜡特性曲线进行测算。随后,结合J、B井筒蜡沉积特点及井筒温度分布,分别选用分子扩散+胶凝作用/分子扩散+剪切作用的蜡沉积预测模型。明确了不同产量下井筒蜡沉积位置、厚度及清管周期等重要参数,并依据现场生产数据对模型进行验证,为现场生产提供了技术指导。最后,结合J井原油胶凝淤积现象和油水两相蜡沉积研究进展,从表面活性物质的界面活性入手,采用含蜡模拟油-水乳化体系,探究了蜡晶界面吸附对蜡沉积的影响作用,通过对比分析含蜡油与W/O乳状液沉积层质量、含水和碳数分布,推知:蜡晶界面吸附作用促进了部分蜡分子扩散、沉积,并引发乳状液体系中分散水滴进入沉积层内,同时延缓了沉积层老化进程。
其他文献
目的探讨完全胃肠外营养(TPN)治疗患者的并发症的预防及护理。方法对498例TPN治疗患者并发症的原因进行分析、预防、治疗和护理。结果本组4例出现TPN相关并发症,经护理无一例
随着光纤传感技术的发展和普及,各式各样的光纤传感器被开发出来,其中光纤压力传感器现已广泛应用于生物、医学、工业等各项测量领域中,光纤压力传感器具有许多显著的优点,比
近年来,大规模MIMO以其较高的频谱效率和能量效率等优势,逐渐成为下一代通信中的关键技术之一。为了实现大规模MIMO系统的优势,信道状态信息的获取变得十分重要,同时由于硬件的非理想特性,相位噪声在大规模MIMO系统中的影响也不容忽视。因此,本论文主要解决大规模MIMO系统中的信道估计和相位噪声抑制问题。针对大规模MIMO系统中的信道估计问题,本文主要考虑大规模MIMO信道的非平稳特性,即信道的稀疏
瞬变电磁法具有探测范围广、效率高等特点,因广泛应用于矿井勘查、石油探测、地下水检测等领域而在国内外得到迅速发展,与此同时,瞬变电磁探测的精细化以及数据解释的准确化也成为了研究热点。一方面,有限差分法作为瞬变电磁常用的三维数值模拟方法,在模拟曲面目标体时常常由于网格剖分的局限性,带来阶梯状近似误差。另一方面,常规的数据解释多基于阶跃波激励,而野外实测数据由于受到斜阶跃效应的影响,使得包含过渡过程的一
裂解性多糖单加氧酶(Lytic polysaccharide monooxygenases,LPMOs)是一类纤维素降解辅助性酶类,在纤维二糖脱氢酶(Cellobiose dehydrogenase,CDH)等电子供体的辅助下,可使多
羰化反应是制备含氧有机化合物和实现有机物碳链增长的有效途径。近年来,采用分子筛的多相催化二甲醚羰化-还原制乙醇的研究开发受到了极大的关注。该方法在催化剂、反应器和
众所周知,Banach空间的测度方程理论在数学方程理论基础上是非常重要的.测度微分方程也叫测度驱动微分方程,它应用于数学的许多领域.测度微分方程早期是由Das提出并进行研究
有机小分子荧光探针是一种重要的重金属离子探测方法,具有合成简便、易于修饰、灵敏度高、无需预处理、便捷等优点。本论文合成了一系列呋喃与噻二唑或噁二唑互联的新型杂环化合物,并对其荧光性能、Pd2+探测性能等进行了研究。以糠酸和呋喃二甲酸为原料,通过直接缩合或酰肼间接缩合等方式,合成得到呋喃与噻二唑或噁二唑互联的双环化合物2-氨基-5-(2-呋喃基)-1,3,4-噻二唑(2)、2-氨基-5-(2-呋喃基
热能存储(TES)技术可以提高能源利用效率并实现所需的热能调节,而相变储能技术是其研究热点。由相变储能技术开发出的相变材料(PCMs)因具有通过潜热吸热并将储存的能量释放到环境中的能力而得到了广泛研究。PCMs在应用中的泄露和传热问题是研究关键,因此其防泄露和传热能力的增强尤为重要。将PCMs封装在聚合物基材或多孔材料中定形,是防止PCMs泄露的有效方法。高分子材料能够调节PCMs的力学性能,多孔
波形设计在无线通信与雷达探测中应用场景广泛,是无线电系统设计中重要的一环。波形的相关性与峰均功率比(Peak-to-Average Power Ratio,PAPR)是波形设计的两个主要优化指标:优良的波形相关性有助于信号的匹配滤波检测;较低的PAPR能够提高高功率放大器(High Power Amplifier,HPA)的功放效率。随着电磁频谱资源日益拥挤,经典的波形不适用于频谱受限的应用场景,