【摘 要】
:
Fenton氧化是指利用Fe2+与H2O2反应来产生具有强氧化性的羟基自由基(HO·)的一种氧化技术。该反应条件温和,操作简单,是处理有机废水的有效方法之一。但均相Fenton氧化反应要求较为苛刻,反应过程中需调节较低pH并需持续投加Fe2+。反应后溶液中含Fe3+,易生成铁泥造成二次污染。非均相Fenton氧化则使用固态催化剂,能够与废水进行分离并有效防止二次污染。Cu金属具有Fenton活性,
论文部分内容阅读
Fenton氧化是指利用Fe2+与H2O2反应来产生具有强氧化性的羟基自由基(HO·)的一种氧化技术。该反应条件温和,操作简单,是处理有机废水的有效方法之一。但均相Fenton氧化反应要求较为苛刻,反应过程中需调节较低pH并需持续投加Fe2+。反应后溶液中含Fe3+,易生成铁泥造成二次污染。非均相Fenton氧化则使用固态催化剂,能够与废水进行分离并有效防止二次污染。Cu金属具有Fenton活性,但Cu系催化剂主要以复合金属氧化物和负载型为主,其活性中心易团聚,无法实现高分散。层状双金属氢氧化物(LDHs)是一种层状材料,其层板金属的高分散、可调控和设计结构的优势使其在催化领域极具潜力和应用前景。因此,本文利用LDHs层板金属的可调变性,首先将具有Fenton活性的金属Cu和Fe构筑于LDHs层板中,引入二价金属Ni和Co,合成CuXFe LDHs(X=Ni/Co),研究M2+对催化性能的影响。随后根据上述研究结果,引入四价金属Ti和Sn,合成CuNiY LDHs(Y=Ti/Sn),研究其催化性能。获得如下结果:1.采用共沉淀法,能够成功制备不同金属比例的CuNiFe和CuCoFe LDHs。随Cu含量的增加,样品中出现Cu(OH)2杂质相。2.LDHs独特的层状结构不仅能够实现金属的高分散,而且有利于金属之间通过金属氧桥(M1-O-M2)转移电子,促进Cu+的产生,形成高的催化活性。与Cu-Co相比,Cu-Ni之间具有更好的协同作用,催化活性更高。Cu0.5Ni2.5Fe LDHs在H2O2用量0.6 mL下即可将苯酚完全降解,大大降低了 H2O2用量,且无需调节苯酚溶液的pH值。3.CuNiFe LDHs中Cu、Ni两金属存在变价,其催化反应历程为:电子通过LDHs中M1-O-M2键由Ni2+转移至Cu2+,产生Ni3+和Cu+;活性中心Cu+与H2O2反应产生HO·和Cu2+;Cu2+继续接受Ni2+提供的电子完成Cu+的还原再生;Fe3+作为另一活性中心参与类芬顿(Fenton-like)反应,并帮助Ni2+进行再生。随着Cu/Ni摩尔比的减小,CuNiFe LDHs中Cu+比例增大,催化活性提高。4.CuNiSn LDHs 的催化活性明显优于 CuNiTi LDHs。CuNi2Sn0.75 LDHs 在 H2O2用量0.6 mL,不调节溶液pH条件下能够降解98%的苯酚。5.CuNiSn LDHs中三种金属均存在变价,其催化反应历程为:借助LDHs的结构优势,电子在Ni2+和Cu2+间进行转移,生成活性中心Cu+;Cu+催化H2O2产生HO·,氧化苯酚;Sn4+帮助Cu2+进行再生;产生的Sn2+与Ni3+之间发生电子转移,使Ni2+和Sn4+得到再生。该体系中电子在三金属间循环转移,使得各个金属得到还原再生。
其他文献
作为新型药物重要来源的天然产物,其生物、药物活性通常只有特定的绝对构型所具有。因此,对天然产物绝对构型的确定,是开展天然产物研究的重要环节。天然产物通常具有多个手性中心,其结构远比通常有机分子复杂,且多数天然产物的单晶难以获得,从而限制常用的谱学手段,如X射线单晶衍射、圆二色等的应用。近年来,随着核磁共振技术的发展,特别是多维技术的发展,核磁共振技术已经成为了天然产物结构鉴定和描述的最主要、也是最
日趋严格的环保要求加快了我国清洁柴油质量升级的步伐,新的柴油质量标准要求进一步降低柴油中的硫含量和多环芳烃含量,并提高十六烷值。加氢精制是生产清洁柴油的主流技术,提高催化剂的加氢活性是生产清洁柴油最为经济有效的方案。传统加氢精制催化剂采用金属含氧酸盐制备,使用前需要在高温、高压、硫化剂存在条件下将金属氧化物转变为具有催化活性的金属硫化物。然而,在工业硫化温度下很难将金属氧化物完全转化成硫化物,使得
灵芝和金针菇均属于白腐担子菌,并且两者的胞外多糖都具有抗氧化、抗炎、免疫调节等生物活性,在医药、多功能护肤品等领域发挥着重要的作用。共培养技术可以利用白腐真菌的种间相互作用,使真菌的次级代谢产物发生正向变化,比单培养具有更大的应用潜能。本研究将共培养技术应用于灵芝和金针菇液态培养中,较为系统地探究了共培养对灵芝和金针菇胞外多糖的影响,从胞外多糖的产量、初级结构、生物活性等方面进行比较。另外,对两者
环境污染与食品安全是人类面临的两大问题,生物可降解、安全性的食品包装材料需求迫切,可降解食品薄膜因此受到了广泛的关注与研究。壳聚糖作为一种制备降解薄膜的优异材料,具有无毒安全、生物相容、抑菌可降解等性能,但高脆性和低柔韧性限制了它的应用范围。这可通过共混改性的方法来改善其机械性能或添加其他功能。本研究以壳聚糖(CS)为成膜基质,使用羟丙基甲基纤维素(HPMC)为辅助成膜材料,并以聚乙烯醇(PVA)
β-氨基酸与α-氨基酸相比具有优异的抗蛋白酶水解稳定性和二级结构多样性,因而在多肽类药物设计上占有重要地位。β-多肽折叠体可作为蛋白-蛋白相互作用的抑制剂和抗菌肽,具有调节生理过程、治疗疾病等作用,亦可用于催化大环化合物的合成和分子识别。多肽自组装体系相较于其他有机和无机自组装体系有众多独特的优点,包括良好的生物相容性、低毒性、易于合成和功能化。近年来,基于β-多肽自组装体系的研究已在生物活性配体
硝基芳烃还原过程中会产生一系列具有高附加值的工业品,其中羟胺芳烃和对氨基苯酚都是极具工业价值的精细化工中间体。如何开发出既能保证产品的高选择性、适合工业生产且符合环保要求的工艺,成为目前研究的重中之重。以开发硝基芳烃选择性加氢制备羟胺芳烃和对氨基苯酚的绿色工艺为研究目标,本文包括以下主要内容:第一章:总结介绍了硝基芳烃加氢的反应历程,产品羟胺芳烃和对氨基苯酚的性质及应用,合成羟胺芳烃和对氨基苯酚常
碳纳米管(CNTs)作为当代一种新型的无机非金属纳米材料,具有优异的力学性能、导热导电性能、生物化学性能、磁学性能、吸附性能、储存性能等,这就使得它自1991年发现以来迅速成为材料科学界的研究热点。由于催化剂直接影响CNTs的性能好坏,所以开发新型高效的催化剂对合成CNTs十分有必要。此次课题基于氧化硅负载硫酸钴(CoSO4/SiO2)催化剂对(9,8)管具有优异的选择性,而硫化钴作为硫酸钴合成C
挥发性有机化合物(VOCs)危害性较大,其中酯类应用广泛,是具有代表性的一类VOCs。目前,我国针对VOCs治理颁布了一系列规划及法律法规,着重提出要把产生挥发性有机化合物(VOCs)的重点行业和重点污染物作为主要控制对象,在消除VOCs的各种技术中,催化氧化技术被认为是最有效的技术之一,因为它可以在低温下处理VOCs,并且与热焚烧技术相比,最小化二次污染空气。目前使用的贵金属催化剂在较低的温度下
近年来,随着全球对油气资源的需求量不断攀升,注聚合物驱已成为一项广受欢迎的提高采收率的新技术,具有十分良好的应用前景,但同时也存在许多亟待解决的问题,面临的首要问题便是采出井井筒管杆的腐蚀。目前,对于聚合物驱采出井的腐蚀问题,相关研究只集中于聚合物本身或腐蚀环境等单方面的带来的影响,且未进行采出液对井筒材质的环境开裂性能与失重腐蚀性能的综合评价。基于新疆油田某区生产过程中井筒含有聚丙烯酰胺聚合物、
随着我国工业化日益迈向成熟,石化燃料的需求量也随之增大。我国作为石化能源消耗大国,2017年原油消耗量占全球消耗总量的13%。注空气采油技术由于气源和成本优势得到越来越多的应用,世界范围内众多专家学者对其驱油机理和现场应用进行了大量研究。该技术能在热采后期有效提高地层能量和减少热损失。该技术能否现场实施的影响因素之一是空气突破后氧气含量要达到安全阈值下,确保生产过程安全实行。添加特定催化剂可以提高